Bifunctional Transition Metal Hydroxysulfides: Room‐Temperature Sulfurization and Their Applications in Zn–Air Batteries

Bifunctional electrocatalysis for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) constitutes the bottleneck of various sustainable energy devices and systems like rechargeable metal–air batteries. Emerging catalyst materials are strongly requested toward superior electrocatalyti...

Full description

Saved in:
Bibliographic Details
Published in:Advanced materials (Weinheim) Vol. 29; no. 35
Main Authors: Wang, Hao‐Fan, Tang, Cheng, Wang, Bin, Li, Bo‐Quan, Zhang, Qiang
Format: Journal Article
Language:English
Published: Germany Wiley Subscription Services, Inc 01-09-2017
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Bifunctional electrocatalysis for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) constitutes the bottleneck of various sustainable energy devices and systems like rechargeable metal–air batteries. Emerging catalyst materials are strongly requested toward superior electrocatalytic activities and practical applications. In this study, transition metal hydroxysulfides are presented as bifunctional OER/ORR electrocatalysts for Zn–air batteries. By simply immersing Co‐based hydroxide precursor into solution with high‐concentration S2−, transition metal hydroxides convert to hydroxysulfides with excellent morphology preservation at room temperature. The as‐obtained Co‐based metal hydroxysulfides are with high intrinsic reactivity and electrical conductivity. The electron structure of the active sites is adjusted by anion modulation. The potential for 10 mA cm−2 OER current density is 1.588 V versus reversible hydrogen electrode (RHE), and the ORR half‐wave potential is 0.721 V versus RHE, with a potential gap of 0.867 V for bifunctional oxygen electrocatalysis. The Co3FeS1.5(OH)6 hydroxysulfides are employed in the air electrode for a rechargeable Zn–air battery with a small overpotential of 0.86 V at 20.0 mA cm−2, a high specific capacity of 898 mAh g−1, and a long cycling life, which is much better than Pt and Ir‐based electrocatalyst in Zn–air batteries. Transition metal hydroxysulfides are proposed as bifunctional electrocatalysts in working Zn–air batteries with high oxygen evolution reaction/oxygen reduction reaction reactivities, high power densities, large capacities, and extraordinary stabilities. These transition metal hydroxysulfides are fabricated through a novel room‐temperature sulfurization strategy, which opens new doors to materials innovation of transition metal (hydro/oxy)sulfides and their practical applications in hetero/electrocatalysis, energy storage, and healthcare applications.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0935-9648
1521-4095
DOI:10.1002/adma.201702327