Saprotrophic and ectomycorrhizal fungal sporocarp stoichiometry (C : N : P) across temperate rainforests as evidence of shared nutrient constraints among symbionts

Quantifying nutritional dynamics of free-living saprotrophs and symbiotic ectomycorrhizal fungi in the field is challenging, but the stoichiometry of fruiting bodies (sporocarps) may be an effective methodology for this purpose. Carbon (C), nitrogen (N) and phosphorus (P) concentrations of soils, fo...

Full description

Saved in:
Bibliographic Details
Published in:The New phytologist Vol. 221; no. 1; pp. 482 - 492
Main Authors: Kranabetter, J. Marty, Harman‐Denhoed, Rachael, Hawkins, Barbara J.
Format: Journal Article
Language:English
Published: England New Phytologist Trust 01-01-2019
Wiley Subscription Services, Inc
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Quantifying nutritional dynamics of free-living saprotrophs and symbiotic ectomycorrhizal fungi in the field is challenging, but the stoichiometry of fruiting bodies (sporocarps) may be an effective methodology for this purpose. Carbon (C), nitrogen (N) and phosphorus (P) concentrations of soils, foliage and 146 sporocarp collections were analyzed from 14 Pseudotsuga menziesii var. menziesii stands across a podzolization gradient on Vancouver Island (Canada). N and P concentrations were considerably higher in saprotrophic fungi. Fungal N% increased with soil N content at a greater rate for saprotrophs than ectomycorrhizal fungi, while fungal P% of saprotrophs was more constrained. Fungal N : P was more responsive to soil N : P for ectomycorrhizal fungi (homeostatic regulation coefficient ‘H’ = 2.9) than saprotrophs (H = 5.9), while N : P of ectomycorrhizal fungi and host tree foliage scaled almost identically. Results underscore the role of ectomycorrhizal fungi as nutrient conduits, supporting host trees, whereas saprotrophs maintain a greater degree of nutritional homeostasis. Site nutrient constraints were shared in equal measure between ectomycorrhizal fungi and host trees, particularly for P, suggesting neither partner benefits from enhanced nutrition at the expense of the other. Sporocarp stoichiometry provides new insights into mycorrhizal relationships and illustrates pervasive P deficiencies across temperate rainforests of the Pacific Northwest.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0028-646X
1469-8137
DOI:10.1111/nph.15380