Momentum and buoyancy transfer in atmospheric turbulent boundary layer over wavy water surface – Part 1: Harmonic wave
The surface-drag and mass-transfer coefficients are determined within a self-consistent problem of wave-induced perturbations and mean fields of velocity and density in the air, using a quasi-linear model based on the Reynolds equations with down-gradient turbulence closure. Investigation of a harmo...
Saved in:
Published in: | Nonlinear processes in geophysics Vol. 20; no. 5; pp. 825 - 839 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
Gottingen
Copernicus GmbH
29-10-2013
Copernicus Publications |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The surface-drag and mass-transfer coefficients are determined within a self-consistent problem of wave-induced perturbations and mean fields of velocity and density in the air, using a quasi-linear model based on the Reynolds equations with down-gradient turbulence closure. Investigation of a harmonic wave propagating along the wind has disclosed that the surface drag is generally larger for shorter waves. This effect is more pronounced in the unstable and neutral stratification. The stable stratification suppresses turbulence, which leads to weakening of the momentum and mass transfer. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1607-7946 1023-5809 1607-7946 |
DOI: | 10.5194/npg-20-825-2013 |