The necrotic venom of the brown recluse spider induces dysregulated endothelial cell-dependent neutrophil activation. Differential induction of GM-CSF, IL-8, and E-selectin expression
Brown recluse spider (Loxosceles reclusa) venom induces severe dermonecrotic lesions. The mechanism for this is unknown but presents an interesting paradox: necrosis is completely dependent on the victim's neutrophils, yet neutrophils are not activated by the venom. We show Loxosceles venom is...
Saved in:
Published in: | The Journal of clinical investigation Vol. 94; no. 2; pp. 631 - 642 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
01-08-1994
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Brown recluse spider (Loxosceles reclusa) venom induces severe dermonecrotic lesions. The mechanism for this is unknown but presents an interesting paradox: necrosis is completely dependent on the victim's neutrophils, yet neutrophils are not activated by the venom. We show Loxosceles venom is a potent, but disjointed, endothelial cell agonist. It weakly induced E-selectin expression, but not intercellular adhesion molecule-1 or IL-6 expression, yet significantly stimulated release of IL-8 and large amounts of GM-CSF by 4 h. In contrast, TNF strongly induced all of these, except for GM-CSF. PMN bound to E-selectin on venom-activated endothelial cells, apparently via counterreceptors different from those that bind E-selectin on TNF alpha-activated monolayers. Notably, PMN bound venom-activated monolayers only at intercellular junctions, did not polarize, and completely failed to migrate beneath the monolayer. Despite this, bound PMN demonstrated increased intracellular Ca2+ levels and secreted primary and secondary granule markers. The latter event was suppressed by sulfones used to treat envenomation. We have defined a new endothelial cell agonist, Loxosceles venom, that differentially stimulates the inflammatory response of endothelial cells. This, in turn, leads to a dysregulated PMN response where adhesion and degranulation are completely dissociated from shape change and transmigration. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0021-9738 |
DOI: | 10.1172/JCI117379 |