Identification of folding preferences of cleavage junctions of HIV-1 precursor proteins for regulation of cleavability

Human immunodeficiency virus type 1 protease (HIV-1 PR) cleaves two viral precursor proteins, Gag and Gag-Pol, at multiple sites. Although the processing proceeds in the rank order to assure effective viral replication, the molecular mechanisms by which the order is regulated are not fully understoo...

Full description

Saved in:
Bibliographic Details
Published in:Journal of molecular modeling Vol. 17; no. 2; pp. 391 - 399
Main Authors: Ode, Hirotaka, Yokoyama, Masaru, Kanda, Tadahito, Sato, Hironori
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer-Verlag 01-02-2011
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Human immunodeficiency virus type 1 protease (HIV-1 PR) cleaves two viral precursor proteins, Gag and Gag-Pol, at multiple sites. Although the processing proceeds in the rank order to assure effective viral replication, the molecular mechanisms by which the order is regulated are not fully understood. In this study, we used bioinformatics approaches to examine whether the folding preferences of the cleavage junctions influence their cleavabilities by HIV-1 PR. The folding of the eight-amino-acid peptides corresponding to the seven cleavage junctions of the HIV-1 HXB2 Gag and Gag-Pol precursors were simulated in the PR-free and PR-bound states with molecular dynamics and homology modeling methods, and the relationships between the folding parameters and the reported kinetic parameters of the HIV-1 HXB2 peptides were analyzed. We found that a folding preference for forming a dihedral angle of Cβ (P1)-Cα (P1)- Cα (P1’)-Cβ (P1’) in the range of 150 to 180 degrees in the PR-free state was positively correlated with the 1/K m (R = 0.95, P = 0.0008) and that the dihedral angle of the O (P2)-C (P2)- C (P1)- O (P1) of the main chains in the PR-bound state was negatively correlated with k cat (R = 0.94, P = 0.001). We further found that these two folding properties influenced the overall cleavability of the precursor protein when the sizes of the side chains at the P1 site were similar. These data suggest that the dihedral angles at the specific positions around the cleavage junctions before and after binding to PR are both critical for regulating the cleavability of precursor proteins by HIV-1 PR.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1610-2940
0948-5023
DOI:10.1007/s00894-010-0739-z