Aging Behavior and Mechanism Evolution of Nano-Al2O3/Styrene-Butadiene-Styrene-Modified Asphalt under Thermal-Oxidative Aging

The goal of this paper is to analyze the aging behavior and the mechanism evolution of nano-Al2O3 (NA)-reinforced styrene-butadiene-styrene (SBS) asphalt under different thermal-oxidative aging conditions. First, NA/SBS-modified asphalt and SBS-modified asphalt with different aging levels were prepa...

Full description

Saved in:
Bibliographic Details
Published in:Materials Vol. 16; no. 17; p. 5866
Main Authors: Ji, Zhiyuan, Wu, Xing, Zhang, Yao, Milani, Gabriele
Format: Journal Article
Language:English
Published: Basel MDPI AG 27-08-2023
MDPI
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The goal of this paper is to analyze the aging behavior and the mechanism evolution of nano-Al2O3 (NA)-reinforced styrene-butadiene-styrene (SBS) asphalt under different thermal-oxidative aging conditions. First, NA/SBS-modified asphalt and SBS-modified asphalt with different aging levels were prepared. Second, the viscosity and high temperature rheological performance of the specimens were tested and the property-related aging indexes were calculated and compared. Third, a Fourier transform infrared (FTIR) test of the specimen was conducted and the chemical group-related aging indexes were calculated and analyzed. Fourth, gel permeation chromatography (GPC) was used to analyze the molecular weight of the specimens under different aging levels. Then, an atomic force microscope (AFM) was adopted to analyze the microsurface morphology of different specimens. Finally, correlation analysis between property-related indexes and chemical group indexes was conducted. The results show that NA can enhance the thermal-oxidative aging resistance of SBS asphalt. NA can inhibit the increase in sulfoxide groups and the degradation of the SBS polymer with the increase in aging. NA can slow down the formation of large molecule during the aging process. The degree of change in both the bee structures and micromorphological roughness of NA/SBS asphalt is lower than that of SBS asphalt under different aging levels.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1996-1944
1996-1944
DOI:10.3390/ma16175866