Advanced alignment of the ATLAS tracking system

In order to reconstruct the trajectories of charged particles, the ATLAS experiment exploits a tracking system built using different technologies, silicon pixel modules or microstrips and gaseous drift tubes, all embedded in a 2T axial magnetic field. Misalignments of the active detector elements an...

Full description

Saved in:
Bibliographic Details
Published in:Nuclear and particle physics proceedings Vol. 273-275; pp. 2533 - 2535
Main Author: Butti, P.
Format: Journal Article
Language:English
Published: Elsevier B.V 01-04-2016
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In order to reconstruct the trajectories of charged particles, the ATLAS experiment exploits a tracking system built using different technologies, silicon pixel modules or microstrips and gaseous drift tubes, all embedded in a 2T axial magnetic field. Misalignments of the active detector elements and deformations of the structures (which can lead to Weak Modes) deteriorate resolution of the track reconstruction and lead to systematic biases on the measured track parameters. The applied alignment procedures exploit various advanced techniques in order to minimise trackhit residuals and remove detector deformations. For the LHC Run II, the Pixel detector has been refurbished and upgraded with the installation of a new pixel layer, the Insertable B-layer.
ISSN:2405-6014
2405-6022
DOI:10.1016/j.nuclphysbps.2015.09.449