A Survey and Study of Planar Antennas for Pico-Satellites

Works on pico-satellites have gained momentum recently, especially those that consider pico-satellites as part of a much larger constellation or swarm. This feature allows pico-satellites to provide high temporal resolution of observational data and redundancy. In particular, it reduces the need for...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access Vol. 3; pp. 2590 - 2612
Main Authors: Em Tubbal, Faisel, Raad, Raad, Kwan-Wu Chin
Format: Journal Article
Language:English
Published: Piscataway IEEE 01-01-2015
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Works on pico-satellites have gained momentum recently, especially those that consider pico-satellites as part of a much larger constellation or swarm. This feature allows pico-satellites to provide high temporal resolution of observational data and redundancy. In particular, it reduces the need for satellite-to-ground communications and, hence, helps save energy and allows the execution of distributed processing algorithms on the satellites themselves. Consequently, satellite-to-satellite or cross-link communication is critical. To realize these advantages, the cross-link antenna employed on pico-satellites must meet many criteria, namely, small size, lightweight, low-power consumption, high gain, wide bandwidth, circular polarization, and beam steerability. To date, no works have examined the suitability of existing planar antenna designs for the use on pico-satellites. To this end, this paper contributes to the literature by focusing on microstrip patch and slot antennas that have the ability to achieve high gain, beam steering, and wide bandwidth. This paper reviews 66 planar antenna designs, which includes 38-patch and 28-slot antennas. In addition, we provide an extensive qualitative comparison of these antennas in terms of their mass, size, gain, beam steerability, type of polarization, operating frequency band, and return loss. In addition, we have evaluated three antenna designs that best address the pico-satellite challenges on a common platform. We find that the asymmetric E-shaped patch antenna design is the most suitable for the use on 2U CubeSats. This is because of its small size (34 × 13 mm 2 ) and high gain (7.3 dB). In addition, the E-shaped patch antenna yields a wide -10-dB bandwidth of 2300 MHz and a small return loss of -15.2 dB.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2015.2506577