Lightweight Reinforcement Learning for Energy Efficient Communications in Wireless Sensor Networks

High-density communications in wireless sensor networks (WSNs) demand for new approaches to meet stringent energy and spectrum requirements. We turn to reinforcement learning, a prominent method in artificial intelligence, to design an energy-preserving MAC protocol, with the aim to extend the netwo...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access Vol. 7; pp. 29355 - 29364
Main Authors: Savaglio, Claudio, Pace, Pasquale, Aloi, Gianluca, Liotta, Antonio, Fortino, Giancarlo
Format: Journal Article
Language:English
Published: Piscataway IEEE 2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:High-density communications in wireless sensor networks (WSNs) demand for new approaches to meet stringent energy and spectrum requirements. We turn to reinforcement learning, a prominent method in artificial intelligence, to design an energy-preserving MAC protocol, with the aim to extend the network lifetime. Our QL-MAC protocol is derived from Q-learning, which iteratively tweaks the MAC parameters through a trial-and-error process to converge to a low energy state. This has a dual benefit of 1) solving this minimization problem without the need of predetermining the system model and 2) providing a self-adaptive protocol to topological and other external changes. QL-MAC self-adjusts the WSN node duty-cycle, reducing energy consumption without detrimental effects on the other network parameters. This is achieved by adjusting the radio sleeping and active periods based on traffic predictions and transmission state of neighboring nodes. Our findings are corroborated by an extensive set of experiments carried out on off-the-shelf devices, alongside large-scale simulations.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2019.2902371