The nanoscopic molecular pathway through human skin

Knowledge regarding the barrier properties of human skin is important for understanding skin pathology, developing of transdermal drug delivery systems and computational skin absorption models; however, the molecular pathways through human skin remains to be fully investigated on a nanoscopic level....

Full description

Saved in:
Bibliographic Details
Published in:Biochimica et biophysica acta. General subjects Vol. 1863; no. 7; pp. 1226 - 1233
Main Authors: Iachina, I., Antonescu, I.E., Dreier, J., Sørensen, J.A., Brewer, J.R.
Format: Journal Article
Language:English
Published: Netherlands Elsevier B.V 01-07-2019
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Knowledge regarding the barrier properties of human skin is important for understanding skin pathology, developing of transdermal drug delivery systems and computational skin absorption models; however, the molecular pathways through human skin remains to be fully investigated on a nanoscopic level. In particular the nanoscopic pathway of molecules passing the intercellular lipid bilayers separating the corneocytes in the stratum corneum (SC) is not fully elucidated. Using stimulated emission depletion microscopy (STED) and Förster resonance energy transfer (FRET) the molecular pathways through the SC, the main barrier of the skin, are determined for lipophilic and water-soluble molecules at a nanoscopic resolution. Using STED and confocal microscopy, water-soluble dyes, were observed to be present in both the corneocytes and in the intercellular lipid matrix, whereas the lipophilic dyes were predominately in the intercellular lipid bilayers. FRET was observed in the SC between the lipophilic and water-soluble dyes, the existence of a minimum possible distance between acceptor and donor molecules of 4.0 ± 0.1 nm was found. The results indicate that lipophilic molecules penetrate the stratum corneum via the intercellular lipids bilayers separating the corneocytes in the SC, while the more water-soluble molecules penetrate the stratum corneum via the transcellular route through the corneocytes and intercellular lipid bilayers via the polar head groups of lipid molecules in the bilayers. Knowledge of the nanoscopic molecular pathways through human skin will help understand the skin barrier function and will be of use for computational skin absorption models and transdermal drug delivery strategies. •Super resolution optical microscopy resolves the intercellular lipid matrix.•FRET was observed between lipophilic and water-soluble dyes in the intercellular lipid matrix.•In SC a minimum distance between lipophilic and water-soluble molecules of 4.0 nm was found.•Water-soluble molecules can move through the intercellular lipid matrix via the polar head groups.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0304-4165
1872-8006
DOI:10.1016/j.bbagen.2019.04.012