The MELAS mutation m.3243A>G alters the expression of mitochondrial tRNA fragments

Recent evidences highlight the importance of mitochondria-nucleus communication for the clinical phenotype of oxidative phosphorylation (OXPHOS) diseases. However, the participation of small non-coding RNAs (sncRNAs) in this communication has been poorly explored. We asked whether OXPHOS dysfunction...

Full description

Saved in:
Bibliographic Details
Published in:Biochimica et biophysica acta. Molecular cell research Vol. 1866; no. 9; pp. 1433 - 1449
Main Authors: Meseguer, Salvador, Navarro-González, Carmen, Panadero, Joaquin, Villarroya, Magda, Boutoual, Rachid, Sánchez-Alcázar, Jose Antonio, Armengod, M.-Eugenia
Format: Journal Article
Language:English
Published: Netherlands Elsevier B.V 01-09-2019
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Recent evidences highlight the importance of mitochondria-nucleus communication for the clinical phenotype of oxidative phosphorylation (OXPHOS) diseases. However, the participation of small non-coding RNAs (sncRNAs) in this communication has been poorly explored. We asked whether OXPHOS dysfunction alters the production of a new class of sncRNAs, mitochondrial tRNA fragments (mt tRFs), and, if so, whether mt tRFs play a physiological role and their accumulation is controlled by the action of mt tRNA modification enzymes. To address these questions, we used a cybrid model of MELAS (mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes), an OXPHOS disease mostly caused by mutation m.3243A>G in the mitochondrial tRNALeu(UUR) gene. High-throughput analysis of small-RNA-Seq data indicated that m.3243A>G significantly changed the expression pattern of mt tRFs. A functional analysis of potential mt tRFs targets (performed under the assumption that these tRFs act as miRNAs) indicated an association with processes that involve the most common affected tissues in MELAS. We present evidences that mt tRFs may be biologically relevant, as one of them (mt i-tRF GluUUC), likely produced by the action of the nuclease Dicer and whose levels are Ago2 dependent, down-regulates the expression of mitochondrial pyruvate carrier 1 (MPC1), promoting the build-up of extracellular lactate. Therefore, our study underpins the idea that retrograde signaling from mitochondria is also mediated by mt tRFs. Finally, we show that accumulation of mt i-tRF GluUUC depends on the modification status of mt tRNAs, which is regulated by the action of stress-responsive miRNAs on mt tRNA modification enzymes. [Display omitted] •Main MELAS mutation changes the mt tRF expression pattern in relation to controls.•Expression of selected mt tRFs correlates with heteroplasmy in MELAS cells.•At least one mt tRF (mt i-tRF GluUUC) seems to be involved in nuclear gene regulation.•Stress-responsive miRNAs control mt i-tRF GluUUC yield via mt tRNA modification enzymes.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0167-4889
1879-2596
DOI:10.1016/j.bbamcr.2019.06.004