Electromagnetic Metamaterials: A New Paradigm of Antenna Design

The progress of technology in consumer electronics demand an antenna having a compact size, high gain and bandwidth, and multiple antennas at transmitter and receiver to enhance the channel capacity. Over the last decade, numerous techniques are proposed to improve the performance of the antenna. On...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access Vol. 9; pp. 18722 - 18751
Main Authors: Kumar, Praveen, Ali, Tanweer, Pai, M. M. Manohara
Format: Journal Article
Language:English
Published: Piscataway IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The progress of technology in consumer electronics demand an antenna having a compact size, high gain and bandwidth, and multiple antennas at transmitter and receiver to enhance the channel capacity. Over the last decade, numerous techniques are proposed to improve the performance of the antenna. One such technique is the use of metamaterials (MTMs) in antenna design. MTMs are artificial structures to provide unique electromagnetic properties that are not available in natural materials. The unique properties of these materials allow the design of high-performance antennas, filters, and microwave devices which cannot be obtained using traditional antennas. Loading antenna with the one, two, and three-dimensional MTM structures comprised of a periodic subwavelength unit cell exhibits RLC resonant structures and allows to manipulate electromagnetic waves in the antenna system. These structures offer low resonant frequency compared to the antenna resonant frequency resulting in antenna miniaturization and manipulation of electromagnetic waves helps in enhancing the gain and bandwidth, and achieving circular polarization (CP) of an antenna system. Also, metamaterial loading enhances isolation between the antenna elements in the multiple-input-multiple output (MIMO) system by suppressing the surface waves. In this paper, the electromagnetics of MTM with analytical expressions and its application in antenna design are discussed in detail. The MTM-based antennas are classified into MTM loading, MTM inspired antenna, metasurface loading, and composite right/left hand (CRLH) based antennas. The recent development in MTM inspired antenna and its application in antenna miniaturization, enhancing gain and bandwidth, achieving CP and mutual coupling suppression in MIMO antenna systems are discussed to make it useful for further research.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2021.3053100