(Strong) Proper Connection in Some Digraphs
An arc-colored digraph <inline-formula> <tex-math notation="LaTeX">D </tex-math></inline-formula> is proper connected if any pair of vertices <inline-formula> <tex-math notation="LaTeX">v_{i},v_{j} \in V(D) </tex-math></inline-formula&...
Saved in:
Published in: | IEEE access Vol. 7; pp. 69692 - 69697 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
Piscataway
IEEE
2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | An arc-colored digraph <inline-formula> <tex-math notation="LaTeX">D </tex-math></inline-formula> is proper connected if any pair of vertices <inline-formula> <tex-math notation="LaTeX">v_{i},v_{j} \in V(D) </tex-math></inline-formula> there is a proper <inline-formula> <tex-math notation="LaTeX">v_{i}-v_{j} </tex-math></inline-formula> path whose adjacent arcs have different colors and a proper <inline-formula> <tex-math notation="LaTeX">v_{j}-v_{i} </tex-math></inline-formula> path whose adjacent arcs have different colors. The proper connection number of a digraph <inline-formula> <tex-math notation="LaTeX">D </tex-math></inline-formula> is the minimum number of colors needed to make <inline-formula> <tex-math notation="LaTeX">D </tex-math></inline-formula> proper connected, denoted by <inline-formula> <tex-math notation="LaTeX">\overrightarrow {pc}(D) </tex-math></inline-formula>. An arc-colored digraph <inline-formula> <tex-math notation="LaTeX">D </tex-math></inline-formula> is strong proper connected if any pair of vertices <inline-formula> <tex-math notation="LaTeX">v_{i},v_{j} \in V(D) </tex-math></inline-formula> there is a proper <inline-formula> <tex-math notation="LaTeX">v_{i}-v_{j} </tex-math></inline-formula> geodesic and a proper <inline-formula> <tex-math notation="LaTeX">v_{j}-v_{i} </tex-math></inline-formula> geodesic. The strong proper connection number of <inline-formula> <tex-math notation="LaTeX">D </tex-math></inline-formula> is the minimum number of colors required to color the arcs of <inline-formula> <tex-math notation="LaTeX">D </tex-math></inline-formula> in order to make <inline-formula> <tex-math notation="LaTeX">D </tex-math></inline-formula> strong proper connected, denoted by <inline-formula> <tex-math notation="LaTeX">\overrightarrow {spc}(D) </tex-math></inline-formula>. In this paper, we will show some results on <inline-formula> <tex-math notation="LaTeX">\overrightarrow {pc}(D) </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">\overrightarrow {spc}(D) </tex-math></inline-formula>, mostly for the case of the (strong) proper connection numbers of cacti and circulant digraphs. |
---|---|
ISSN: | 2169-3536 2169-3536 |
DOI: | 10.1109/ACCESS.2019.2918368 |