A Secure Federated Deep Learning-Based Approach for Heating Load Demand Forecasting in Building Environment
Recently, with the establishment of new thermal regulation, the energy efficiency of buildings has increased significantly, and various deep learning-based methods have been presented to accurately forecast the heating load demand of buildings. However, all of these methods are executed on a dataset...
Saved in:
Published in: | IEEE access Vol. 10; pp. 5037 - 5050 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Piscataway
IEEE
2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Recently, with the establishment of new thermal regulation, the energy efficiency of buildings has increased significantly, and various deep learning-based methods have been presented to accurately forecast the heating load demand of buildings. However, all of these methods are executed on a dataset with specific distribution and do not have the property of global forecasting, and have no guarantee of data privacy against cyber-attacks. This paper presents a novel approach to heating load demand forecasting based on Cyber-Secure Federated Deep Learning (CSFDL). The suggested CSFDL provides a global super-model for forecasting heating load demand of different local clients without knowing their location and, most importantly, without revealing their privacy. In this study, a CSFDL global server is trained and tested considering the heating load demand of 10 different clients in their building environment. The presented results, including a comparative study, prove the viability and accuracy of the proposed procedure. |
---|---|
ISSN: | 2169-3536 2169-3536 |
DOI: | 10.1109/ACCESS.2021.3139529 |