Lattice Reduction Aided Precoding Design in Downstream G.fast DSL Networks

As a non-linear precoding alternative to Tomlinson-Harashima precoding (THP), in this paper, so-called lattice reduction aided precoding (LRP) is considered as a crosstalk precompensation technique for downstream transmission in G.fast DSL networks. First, a practically achievable bit-rate expressio...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access Vol. 8; pp. 19208 - 19220
Main Authors: Lanneer, Wouter, Nuzman, Carl, Lefevre, Yannick, Tsiaflakis, Paschalis, Coomans, Werner, Moonen, Marc
Format: Journal Article
Language:English
Published: Piscataway IEEE 2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:As a non-linear precoding alternative to Tomlinson-Harashima precoding (THP), in this paper, so-called lattice reduction aided precoding (LRP) is considered as a crosstalk precompensation technique for downstream transmission in G.fast DSL networks. First, a practically achievable bit-rate expression for LRP is proposed in function of the precoder and integer matrix. The problem then consists of a joint precoder and integer matrix design in order to maximize the weighted sum-rate (WSR) under per-line power constraints. For a fixed integer matrix, zero-forcing (ZF) precoder matrix design simplifies to gain scaling optimization with complex gain scalars, for which a successive lower bound maximization method is presented. Additionally, it is established that the achievable ZF-LRP sum-rate is upper bounded by the achievable ZF-THP sum-rate at high SNR. For computing the optimal precoder matrix, on the other hand, an efficient method is developed by leveraging on the equivalence between the WSR maximization and the weighted sum of mean squared error (MSE) minimization, leading to a locally-optimal MMSE-LRP solution. Simulations with a measured G.fast cable binder are provided to compare the proposed LRP schemes with THP schemes.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2020.2967666