Volumetric Object Recognition Using 3-D CNNs on Depth Data

Recognizing 3-D objects has a wide range of application areas from autonomous robots to self-driving vehicles. The popularity of low-cost RGB-D sensors has enabled a rapid progress in 3-D object recognition in the recent years. Most of the existing studies use depth data as an additional channel to...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access Vol. 6; pp. 20058 - 20066
Main Authors: Caglayan, Ali, Can, Ahmet Burak
Format: Journal Article
Language:English
Published: Piscataway IEEE 01-01-2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Recognizing 3-D objects has a wide range of application areas from autonomous robots to self-driving vehicles. The popularity of low-cost RGB-D sensors has enabled a rapid progress in 3-D object recognition in the recent years. Most of the existing studies use depth data as an additional channel to the RGB channels. Instead of this approach, we propose two volumetric representations to reveal rich 3-D structural information hidden in depth images. We present a 3-D convolutional neural network (CNN)-based object recognition approach, which utilizes these volumetric representations and single and multi-rotational depth images. The 3-D CNN architecture trained to recognize single depth images produces competitive results with the state-of-the-art methods on two publicly available datasets. However, recognition accuracy increases further when the multiple rotations of objects are brought together. Our multirotational 3-D CNN combines information from multiple views of objects to provide rotational invariance and improves the accuracy significantly comparing with the single-rotational approach. The results show that utilizing multiple views of objects can be highly informative for the 3-D CNN-based object recognition.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2018.2820840