Immunotherapy for acute myeloid leukemia (AML): a potent alternative therapy
[Display omitted] The standard therapy of AML for many years has been chemotherapy with or without stem transplantation. However, there has not been any tangible improvement in this treatment beyond induction through chemotherapy and consolidation with allogeneic stem cell transplantation or chemoth...
Saved in:
Published in: | Biomedicine & pharmacotherapy Vol. 97; pp. 225 - 232 |
---|---|
Main Authors: | , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
France
Elsevier Masson SAS
01-01-2018
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | [Display omitted]
The standard therapy of AML for many years has been chemotherapy with or without stem transplantation. However, there has not been any tangible improvement in this treatment beyond induction through chemotherapy and consolidation with allogeneic stem cell transplantation or chemotherapy. Residual AML cells which later cause relapse mostly persist even after rigorous standard therapy. It is imperative therefore to find an alternative therapy that can take care of the residual AML cells. With a better understanding of how the immune system works to destroy tumor cells and inhibit their growth, another therapeutic option immunotherapy has emerged to address the difficulties associated with the standard therapy. Identification of leukemia-associated antigens (LAA) and the fact that T and NK cells can be activated to exert cytotoxicity on AML cells have further introduced diverse immunotherapeutic development strategies. This review discusses the merits of current immunotherapeutic strategies such as the use of antibodies, adoptive T cells and alloreactive NK cell, and vaccination as against the standard therapy of AML. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 |
ISSN: | 0753-3322 1950-6007 |
DOI: | 10.1016/j.biopha.2017.10.100 |