Chromatographic Determination of Total Selenium in Biofortified Allium   sp. following Piazselenol Formation and Micro-Solid-Phase Extraction

Herein, a method based on selective piazselenol formation is applied for total selenium determination in biofortified species. Piazselenol is formed by reacting Se(IV) with an aromatic diamine, namely 4-nitro-1,2-phenylenediamine, in acidic medium. Samples were digested in a nitric acid/hydrogen per...

Full description

Saved in:
Bibliographic Details
Published in:Molecules (Basel, Switzerland) Vol. 26; no. 21; p. 6730
Main Authors: Bosca, Bogdan M, Mot, Augustin C
Format: Journal Article
Language:English
Published: Switzerland MDPI AG 06-11-2021
MDPI
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Herein, a method based on selective piazselenol formation is applied for total selenium determination in biofortified species. Piazselenol is formed by reacting Se(IV) with an aromatic diamine, namely 4-nitro-1,2-phenylenediamine, in acidic medium. Samples were digested in a nitric acid/hydrogen peroxide open system, followed by selenate reduction in hydrochloric acid. Reaction conditions were optimized in terms of pH, temperature, reaction time, and other auxiliary reagents for interference removal, namely, EDTA and hydroxylamine. For the extraction of the selectively formed 4-nitro-piazselenol, micro-solid-phase extraction (μSPE) was applied, and the analysis and detection of the corresponding complex was performed by HPLC coupled with DAD. An external standard calibration curve was developed (R = 0.9994) with good sensitivity, and was used to calculate the total selenium content from several plants material, with good intermediate precision (RSD% < 16%). The accuracy of the method was evaluated using both, a comparison with an accepted reference method from our previously published data, as well as three certified reference material with recoveries between 84-126%. The limit of detection was determined to be 0.35 μg/g (in solids) and 1.1 μg/L (in solution), while the limit of quantification was 1.07 μg/g and 3.4 μg/L (in solution). Using the proposed method, selenium content can be quickly and accurately determined in several types of samples. In addition, this study present experimental conditions for overcoming the interferences that might be encountered in selenium determination using piazselenol.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules26216730