Epoxy/Graphene Nanoplatelet (GNP) Nanocomposites: An Experimental Study on Tensile, Compressive, and Thermal Properties

This paper presents an experimental investigation of nanocomposites composed of three ratios of epoxy/graphene nanoplatelets (GNPs) by weight. The 0.1, 0.2, and 0.3 wt.% specimens were carefully manufactured, and their mechanical and thermal conductivity properties were examined. The tensile strengt...

Full description

Saved in:
Bibliographic Details
Published in:Polymers Vol. 16; no. 11; p. 1483
Main Authors: Akter, Mahmuda, Ozdemir, Huseyin, Bilisik, Kadir
Format: Journal Article
Language:English
Published: Switzerland MDPI AG 23-05-2024
MDPI
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper presents an experimental investigation of nanocomposites composed of three ratios of epoxy/graphene nanoplatelets (GNPs) by weight. The 0.1, 0.2, and 0.3 wt.% specimens were carefully manufactured, and their mechanical and thermal conductivity properties were examined. The tensile strength and modulus of epoxy/GNPs were enhanced by the large surface area of graphene nanoplatelets, causing crack deflection that created new fracture fronts and friction because of the rough fracture surface. However, the compressive strength was gradually reduced as GNP loading percentages increased. This was probably due to severe plastic yielding on the epoxy, leading to catastrophic axial splitting caused by premature fractures. Furthermore, the highest thermal conductivity was 0.1283 W/m-K, representing a 20.92% improvement over neat epoxy (0.1061 W/m-K) when 0.3 wt.% GNPs were added to the epoxy. This was because of efficient heat propagation in the GNPs due to electron movement through percolative paths. The tensile failure mode in epoxy/GNP nanocomposites showed a few deflected and bifurcated rough cracks and brittle, dimple-like fractures. Contrarily, compressive failure mode in GNP-added epoxy showed plastic flexural buckling and brittle large-axial splitting. The epoxy/GNP nanocomposites were considered a damage-tolerant material.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2073-4360
2073-4360
DOI:10.3390/polym16111483