Coherent control of vacuum squeezing in the gravitational-wave detection band

We propose and demonstrate a coherent control scheme for stable phase locking of squeezed vacuum fields. We focus on sideband fields at frequencies from 10 Hz to 10 kHz, which is a frequency regime of particular interest in gravitational-wave detection and for which conventional control schemes have...

Full description

Saved in:
Bibliographic Details
Published in:Physical review letters Vol. 97; no. 1; p. 011101
Main Authors: Vahlbruch, Henning, Chelkowski, Simon, Hage, Boris, Franzen, Alexander, Danzmann, Karsten, Schnabel, Roman
Format: Journal Article
Language:English
Published: United States 07-07-2006
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We propose and demonstrate a coherent control scheme for stable phase locking of squeezed vacuum fields. We focus on sideband fields at frequencies from 10 Hz to 10 kHz, which is a frequency regime of particular interest in gravitational-wave detection and for which conventional control schemes have failed so far. A vacuum field with broadband squeezing covering this entire band was produced using optical parametric oscillation and characterized with balanced homodyne detection. The system was stably controlled over long periods utilizing two coherent but frequency shifted control fields. In order to demonstrate the performance of our setup the squeezed field was used for a nonclassical sensitivity improvement of a Michelson interferometer at audio frequencies.
AbstractList We propose and demonstrate a coherent control scheme for stable phase locking of squeezed vacuum fields. We focus on sideband fields at frequencies from 10 Hz to 10 kHz, which is a frequency regime of particular interest in gravitational-wave detection and for which conventional control schemes have failed so far. A vacuum field with broadband squeezing covering this entire band was produced using optical parametric oscillation and characterized with balanced homodyne detection. The system was stably controlled over long periods utilizing two coherent but frequency shifted control fields. In order to demonstrate the performance of our setup the squeezed field was used for a nonclassical sensitivity improvement of a Michelson interferometer at audio frequencies.
ArticleNumber 011101
Author Vahlbruch, Henning
Schnabel, Roman
Danzmann, Karsten
Hage, Boris
Chelkowski, Simon
Franzen, Alexander
Author_xml – sequence: 1
  givenname: Henning
  surname: Vahlbruch
  fullname: Vahlbruch, Henning
  organization: Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut) and Institut für Gravitationsphysik, Universität Hannover, Callinstrasse 38, 30167 Hannover, Germany
– sequence: 2
  givenname: Simon
  surname: Chelkowski
  fullname: Chelkowski, Simon
– sequence: 3
  givenname: Boris
  surname: Hage
  fullname: Hage, Boris
– sequence: 4
  givenname: Alexander
  surname: Franzen
  fullname: Franzen, Alexander
– sequence: 5
  givenname: Karsten
  surname: Danzmann
  fullname: Danzmann, Karsten
– sequence: 6
  givenname: Roman
  surname: Schnabel
  fullname: Schnabel, Roman
BackLink https://www.ncbi.nlm.nih.gov/pubmed/16907363$$D View this record in MEDLINE/PubMed
BookMark eNpNkN1LwzAUxYNM3If-CUqefOu8abqkeZThF0wU0eeSprdbpU1mk1bmX2_HBvp04HDOvYfflIyss0jIJYM5Y8BvXjc7_4b9CkOYKzkHNrjshEwYSBVJxpIRmQBwFikAOSZT7z8BgMUiPSNjJhRILviEPC_dBlu0gRpnQ-tq6kraa9N1DfVfHeJPZde0sjRskK5b3VdBh8pZXUffukdaYECzN2iubXFOTktde7w46ox83N-9Lx-j1cvD0_J2FZkERIgKVS5UYvK4UIXIVaIMhyJNjIyxNEkpJKgFyJLlCnWc5GnJY-CoUtCSqUIKPiPXh7vb1g0jfciayhusa23RdT4TqUyEYPEQXByCpnXet1hm27ZqdLvLGGR7jtk_jpmS2YHj0Ls6PujyBou_1hEc_wUuU3Qi
CitedBy_id crossref_primary_10_1088_1742_6596_2038_1_012008
crossref_primary_10_1088_1361_6382_ab9143
crossref_primary_10_1007_s12596_019_00537_x
crossref_primary_10_1364_OE_19_025763
crossref_primary_10_1051_epjconf_20135702002
crossref_primary_10_1103_PhysRevLett_100_033602
crossref_primary_10_7498_aps_67_20172563
crossref_primary_10_1364_OL_433440
crossref_primary_10_1364_OL_37_003141
crossref_primary_10_12942_lrr_2012_5
crossref_primary_10_1364_OPTICA_3_000682
crossref_primary_10_1364_OE_20_018173
crossref_primary_10_1364_OL_493217
crossref_primary_10_1016_j_cjph_2022_08_011
crossref_primary_10_1088_1742_6596_122_1_012023
crossref_primary_10_7498_aps_68_20181614
crossref_primary_10_1103_PhysRevLett_123_231108
crossref_primary_10_7498_aps_73_20231765
crossref_primary_10_1103_PhysRevA_90_033847
crossref_primary_10_1103_PhysRevA_81_013814
crossref_primary_10_1063_5_0046317
crossref_primary_10_1103_PhysRevA_81_062301
crossref_primary_10_1002_qua_27050
crossref_primary_10_1007_s11467_008_0018_y
crossref_primary_10_1088_1361_6382_aba4bb
crossref_primary_10_1088_0264_9381_29_7_075001
crossref_primary_10_1116_5_0077548
crossref_primary_10_1063_1_4953326
crossref_primary_10_1103_PhysRevLett_123_231107
crossref_primary_10_1364_OE_452299
crossref_primary_10_1038_nphys2083
crossref_primary_10_1364_OE_416713
crossref_primary_10_1088_0264_9381_27_8_084027
crossref_primary_10_2221_jcsj_46_385
crossref_primary_10_1103_PhysRevLett_130_123603
crossref_primary_10_7498_aps_67_20171767
crossref_primary_10_1088_2040_8986_ab5693
crossref_primary_10_1038_srep18052
crossref_primary_10_1088_1361_6382_34_2_024001
crossref_primary_10_1088_1742_6596_228_1_012029
crossref_primary_10_1016_j_physleta_2018_10_003
crossref_primary_10_2184_lsj_37_108
crossref_primary_10_1088_1402_4896_ac2efc
crossref_primary_10_1088_0953_4075_44_1_015502
crossref_primary_10_1103_PhysRevLett_124_171102
crossref_primary_10_1364_OE_16_007369
crossref_primary_10_1364_OL_34_001060
crossref_primary_10_1088_0264_9381_29_14_145015
crossref_primary_10_1038_srep43680
crossref_primary_10_3390_galaxies8040079
crossref_primary_10_1088_1674_1056_ac0527
crossref_primary_10_1103_PhysRevD_76_102002
crossref_primary_10_1103_PhysRevA_76_023803
crossref_primary_10_1088_0953_4075_46_10_104001
crossref_primary_10_1063_1_4942464
crossref_primary_10_1103_PhysRevA_78_063820
crossref_primary_10_1038_s41467_022_32495_7
crossref_primary_10_1103_RevModPhys_86_121
crossref_primary_10_1088_0264_9381_31_3_035017
crossref_primary_10_1364_OE_447603
crossref_primary_10_1088_1674_1056_22_9_094206
crossref_primary_10_7498_aps_65_060401
crossref_primary_10_1364_OL_38_002265
crossref_primary_10_1016_j_optcom_2015_09_034
crossref_primary_10_1103_PhysRevLett_125_070502
crossref_primary_10_3390_universe7090322
crossref_primary_10_1103_PhysRevD_108_043034
crossref_primary_10_1103_PhysRevA_78_043829
crossref_primary_10_1103_PhysRevApplied_21_L031002
crossref_primary_10_1364_OE_22_021106
crossref_primary_10_1007_s11467_022_1246_2
crossref_primary_10_1103_PhysRevA_104_053706
crossref_primary_10_1088_1361_6382_aaf448
crossref_primary_10_1088_1402_4896_ac0d30
crossref_primary_10_1063_1_4901588
crossref_primary_10_1103_PhysRevA_109_052626
crossref_primary_10_1103_PhysRevD_80_042006
crossref_primary_10_1364_OL_32_000985
crossref_primary_10_1103_PhysRevLett_110_181101
crossref_primary_10_1364_OE_475941
crossref_primary_10_1103_PhysRevB_109_L041301
crossref_primary_10_1103_PhysRevLett_125_213601
crossref_primary_10_1103_PhysRevLett_126_041102
crossref_primary_10_1103_PhysRevD_78_062003
crossref_primary_10_1140_epjd_s10053_021_00337_8
crossref_primary_10_1103_PhysRevD_77_062003
crossref_primary_10_1103_PhysRevD_76_062002
crossref_primary_10_1364_OE_21_018371
crossref_primary_10_1103_PhysRevLett_129_121103
crossref_primary_10_1103_PhysRevD_101_102005
crossref_primary_10_1088_0264_9381_31_18_183001
crossref_primary_10_1088_1674_1056_acc520
crossref_primary_10_1103_PhysRevLett_131_143603
crossref_primary_10_1088_1674_1056_21_10_104204
crossref_primary_10_1109_ACCESS_2019_2914145
crossref_primary_10_1364_OE_25_024262
crossref_primary_10_1103_PhysRevX_13_041021
crossref_primary_10_1103_PhysRevLett_112_073602
crossref_primary_10_1364_OL_42_004553
crossref_primary_10_1002_prop_202200124
crossref_primary_10_1002_prop_202200126
crossref_primary_10_1364_OPTICA_511924
crossref_primary_10_1088_0264_9381_25_11_114013
crossref_primary_10_7498_aps_67_20181335
crossref_primary_10_1587_bplus_14_95
crossref_primary_10_1088_0953_4075_49_6_065401
crossref_primary_10_1103_PhysRevD_75_082003
crossref_primary_10_1103_PhysRevD_105_122005
crossref_primary_10_1364_JOSAB_24_002702
crossref_primary_10_1088_1367_2630_9_10_371
crossref_primary_10_1364_OE_24_000146
crossref_primary_10_1007_s10714_010_1023_3
crossref_primary_10_1364_OPTICA_5_000628
crossref_primary_10_1103_PhysRevApplied_7_044026
crossref_primary_10_1063_1_4973895
crossref_primary_10_1103_PhysRevLett_128_083606
crossref_primary_10_1364_OE_27_037877
crossref_primary_10_1038_s41566_019_0527_y
crossref_primary_10_1142_S0219887822501699
crossref_primary_10_1016_j_ijleo_2013_01_065
crossref_primary_10_1088_1674_1056_26_12_124206
crossref_primary_10_1038_ncomms1122
crossref_primary_10_1088_1612_202X_ab0a60
crossref_primary_10_1364_OE_21_019047
crossref_primary_10_1103_PhysRevD_104_062006
crossref_primary_10_1364_OE_497555
crossref_primary_10_3788_AOS230797
crossref_primary_10_1364_PRJ_459889
crossref_primary_10_12942_lrr_2011_5
crossref_primary_10_1103_PhysRevA_75_043814
crossref_primary_10_1364_OE_23_008235
crossref_primary_10_1038_s41566_019_0582_4
crossref_primary_10_1016_j_apm_2014_11_066
crossref_primary_10_1038_nphoton_2013_177
crossref_primary_10_1103_PhysRevLett_117_110801
crossref_primary_10_1103_PhysRevLett_125_131101
crossref_primary_10_1364_OL_44_005386
crossref_primary_10_1016_j_ijleo_2014_01_184
crossref_primary_10_1103_PhysRevLett_100_073601
crossref_primary_10_1016_j_physleta_2013_02_043
crossref_primary_10_1103_PhysRevA_103_013726
crossref_primary_10_1146_annurev_nucl_102014_022017
crossref_primary_10_1016_j_physrep_2015_12_002
crossref_primary_10_1142_S0217979216502489
crossref_primary_10_3367_UFNr_2016_07_037866
crossref_primary_10_1364_OL_36_004680
crossref_primary_10_3390_app9071272
crossref_primary_10_1088_0264_9381_31_22_224002
crossref_primary_10_1103_PhysRevA_107_042413
crossref_primary_10_1103_PhysRevLett_100_243601
crossref_primary_10_1140_epjp_s13360_023_04805_5
crossref_primary_10_1103_PhysRevD_81_122002
Cites_doi 10.1103/PhysRevLett.88.231102
10.1103/PhysRevD.65.022002
10.1103/PhysRevLett.93.161105
10.1103/PhysRevD.68.042001
10.1103/PhysRevLett.95.211102
10.1088/0264-9381/23/8/S31
10.1103/PhysRevD.38.2317
10.1103/PhysRevD.23.1693
10.1088/1464-4266/7/10/032
10.1103/PhysRevA.71.013806
ContentType Journal Article
DBID NPM
AAYXX
CITATION
7X8
DOI 10.1103/PhysRevLett.97.011101
DatabaseName PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1079-7114
EndPage 011101
ExternalDocumentID 10_1103_PhysRevLett_97_011101
16907363
Genre Journal Article
GroupedDBID ---
-DZ
-~X
123
2-P
29O
3MX
5VS
6TJ
85S
8NH
AAYJJ
ACBEA
ACGFO
ACNCT
AENEX
AEQTI
AFFNX
AFGMR
AGDNE
AJQPL
ALMA_UNASSIGNED_HOLDINGS
APKKM
AUAIK
CS3
D0L
DU5
EBS
EJD
F5P
MVM
N9A
NPBMV
NPM
OHT
P0-
P2P
RNS
ROL
S7W
SJN
TN5
UBE
VQA
WH7
XOL
XSW
YNT
ZPR
~02
186
3O-
41~
8WZ
9M8
A6W
AAYXX
ABTAH
ACKIV
CITATION
ER.
H~9
NEJ
NHB
OK1
T9H
UBC
UCJ
VOH
XJT
YYP
ZCG
ZY4
7X8
ID FETCH-LOGICAL-c406t-d9f594cb2d9d6b949c30d84c72efc4f6709507f1b9ea24b8f3203e980a719d763
IEDL.DBID ZPR
ISSN 0031-9007
IngestDate Fri Oct 25 22:21:22 EDT 2024
Thu Sep 26 18:14:15 EDT 2024
Tue Oct 15 23:34:22 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-d9f594cb2d9d6b949c30d84c72efc4f6709507f1b9ea24b8f3203e980a719d763
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://pure.mpg.de/pubman/item/item_150893_1/component/file_150891/PRL97_011101.pdf
PMID 16907363
PQID 68746612
PQPubID 23479
PageCount 1
ParticipantIDs proquest_miscellaneous_68746612
crossref_primary_10_1103_PhysRevLett_97_011101
pubmed_primary_16907363
PublicationCentury 2000
PublicationDate 2006-07-07
PublicationDateYYYYMMDD 2006-07-07
PublicationDate_xml – month: 07
  year: 2006
  text: 2006-07-07
  day: 07
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Physical review letters
PublicationTitleAlternate Phys Rev Lett
PublicationYear 2006
References PhysRevLett.97.011101Cc10R1
PhysRevLett.97.011101Cc4R1
PhysRevLett.97.011101Cc11R1
PhysRevLett.97.011101Cc5R1
PhysRevLett.97.011101Cc12R1
PhysRevLett.97.011101Cc6R1
PhysRevLett.97.011101Cc1R1
K. S. Thorne (PhysRevLett.97.011101Cc2R1) 1987
PhysRevLett.97.011101Cc7R1
W. G. Unruh (PhysRevLett.97.011101Cc3R1) 1983
PhysRevLett.97.011101Cc8R1
PhysRevLett.97.011101Cc9R1
References_xml – volume-title: Quantum Optics, Experimental Gravitation, and Measurement Theory
  year: 1983
  ident: PhysRevLett.97.011101Cc3R1
  contributor:
    fullname: W. G. Unruh
– ident: PhysRevLett.97.011101Cc8R1
  doi: 10.1103/PhysRevLett.88.231102
– ident: PhysRevLett.97.011101Cc4R1
  doi: 10.1103/PhysRevD.65.022002
– ident: PhysRevLett.97.011101Cc10R1
  doi: 10.1103/PhysRevLett.93.161105
– volume-title: 300 Years of Gravitation
  year: 1987
  ident: PhysRevLett.97.011101Cc2R1
  contributor:
    fullname: K. S. Thorne
– ident: PhysRevLett.97.011101Cc5R1
  doi: 10.1103/PhysRevD.68.042001
– ident: PhysRevLett.97.011101Cc9R1
  doi: 10.1103/PhysRevLett.95.211102
– ident: PhysRevLett.97.011101Cc11R1
  doi: 10.1088/0264-9381/23/8/S31
– ident: PhysRevLett.97.011101Cc6R1
  doi: 10.1103/PhysRevD.38.2317
– ident: PhysRevLett.97.011101Cc1R1
  doi: 10.1103/PhysRevD.23.1693
– ident: PhysRevLett.97.011101Cc12R1
  doi: 10.1088/1464-4266/7/10/032
– ident: PhysRevLett.97.011101Cc7R1
  doi: 10.1103/PhysRevA.71.013806
SSID ssj0001268
Score 2.377343
Snippet We propose and demonstrate a coherent control scheme for stable phase locking of squeezed vacuum fields. We focus on sideband fields at frequencies from 10 Hz...
SourceID proquest
crossref
pubmed
SourceType Aggregation Database
Index Database
StartPage 011101
Title Coherent control of vacuum squeezing in the gravitational-wave detection band
URI https://www.ncbi.nlm.nih.gov/pubmed/16907363
https://search.proquest.com/docview/68746612
Volume 97
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV25TgMxELUgEhIN9xFOF7Sb7NqOjxJykAaKhKtb-ZSQYIOSbAq-HtubcEikyA_Y1ng088bz5hmAK-MDY8vRLHHMOF-gMJxIGkQ_lSZMEal0pPz3h-z-hXe6QSan-X8HP0txMzAhB3YWplsagjXC3-jVvBZnIs6LDL4jb4ZoFXlxoB2kbD6xs3SVv7loCcCMiaa3vfIRd8DWHFPC68oJdsGaLfbARuR26sk-uAsjGEGECbYrXjocOfgkdVm-w2EoZD99-oKvBfRYEN6O5Wwu2y3fkmc5s7Bjp5GvVcAbWZgD8NjrPrT7yfwXhUT7ZD1NjHAtQbRCRhiqBBEap4YTzZB1mrig3-YxocuUsBIRxR1GKbaCp5JlwvjwcwhqxaiwxwBaIR2mVGInCbGZ5k5ZiSVCmeGGKFMHjYU9849KLCOPRUaK8182ykPPO9qoDi4XVs-9W4dehSzsqJzklDPioQOqg6PqMn4WDPU8pvhk1c1OwWb1fhLeZs9AbTou7TlYn5jyIrrRF6QUxfE
link.rule.ids 315,782,786,2879,27933,27934
linkProvider American Physical Society
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coherent+control+of+vacuum+squeezing+in+the+gravitational-wave+detection+band&rft.jtitle=Physical+review+letters&rft.au=Vahlbruch%2C+Henning&rft.au=Chelkowski%2C+Simon&rft.au=Hage%2C+Boris&rft.au=Franzen%2C+Alexander&rft.date=2006-07-07&rft.issn=0031-9007&rft.volume=97&rft.issue=1&rft.spage=011101&rft.epage=011101&rft_id=info:doi/10.1103%2FPhysRevLett.97.011101&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-9007&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-9007&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-9007&client=summon