The impact of positive-pressure breathing apparatus on muscle fatigue of volunteer firefighter

Muscle fatigue is one of the leading causes that contributes tremendously to injuries among volunteer firefighters in the workplace. The purpose of this study was to investigate the impact of positive-pressure breathing apparatus on muscle fatigue in the shoulder, back, and legs of volunteer firefig...

Full description

Saved in:
Bibliographic Details
Published in:PloS one Vol. 19; no. 6; p. e0305599
Main Authors: Hu, Huimin, Wang, Jie, Ouyang, Lixin, Luo, Ling, Niu, Wenlei
Format: Journal Article
Language:English
Published: United States Public Library of Science 24-06-2024
Public Library of Science (PLoS)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Muscle fatigue is one of the leading causes that contributes tremendously to injuries among volunteer firefighters in the workplace. The purpose of this study was to investigate the impact of positive-pressure breathing apparatus on muscle fatigue in the shoulder, back, and legs of volunteer firefighters. A total of 60 volunteer firefighters were recruited to perform a running task on a motorized treadmill in a controlled laboratory environment. Surface electromyography and rating of perceived exertion scores were collected from all participants every 60 seconds during the running task. Results show that the median frequency values for all measured muscle groups were significantly lower, and the rating of perceived exertion score was significantly higher after running with the positive-pressure breathing apparatus. Meanwhile, there were no significant differences in the median frequency values for the upper trapezius, erector spinae, and biceps femoris between the initial and final periods of running task without load. However, the median frequency values with load for gastrocnemius, rectus femoris, and tibialis anterior exhibited a greater downward trend compared to those without load. Additionally, using a breathing apparatus can cause asymmetric muscle fatigue in bilateral upper trapezius, erector spinae, gastrocnemius, and tibialis anterior muscles. The decreased performance due to muscle fatigue increases the risk of accidents, thereby posing a threat to the safety of volunteer firefighters. This study offers valuable insights into the effects of positive-pressure breathing apparatus on muscle fatigue among volunteer firefighters. These results may serve as a reference for developing improved fatigue management strategies and optimizing the design features of breathing apparatus.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0305599