Multiscale analysis of moving clusters of microcontacts
Greenwood’s approximation for the thermal resistance of a cluster of microcontacts is used recursively to estimate the thermal resistance due to a fractal array of circular contact areas motivated by Archard’s contact model. The results are then extended to the case of sliding contacts, using a tech...
Saved in:
Published in: | International journal of heat and mass transfer Vol. 53; no. 19; pp. 3817 - 3822 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
Kidlington
Elsevier Ltd
01-09-2010
Elsevier |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Greenwood’s approximation for the thermal resistance of a cluster of microcontacts is used recursively to estimate the thermal resistance due to a fractal array of circular contact areas motivated by Archard’s contact model. The results are then extended to the case of sliding contacts, using a technique due to Burton. It is found that the total resistance converges on a limit when arbitrarily large numbers of fractal scales are included, but the fine scale features in the contact area have a disproportionate effect at high Peclet number and hence reduce the proportion of frictional heating passing into the moving body. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0017-9310 1879-2189 |
DOI: | 10.1016/j.ijheatmasstransfer.2010.04.034 |