WLD: A Robust Local Image Descriptor
Inspired by Weber's Law, this paper proposes a simple, yet very powerful and robust local descriptor, called the Weber Local Descriptor (WLD). It is based on the fact that human perception of a pattern depends not only on the change of a stimulus (such as sound, lighting) but also on the origin...
Saved in:
Published in: | IEEE transactions on pattern analysis and machine intelligence Vol. 32; no. 9; pp. 1705 - 1720 |
---|---|
Main Authors: | , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Los Alamitos, CA
IEEE
01-09-2010
IEEE Computer Society The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Inspired by Weber's Law, this paper proposes a simple, yet very powerful and robust local descriptor, called the Weber Local Descriptor (WLD). It is based on the fact that human perception of a pattern depends not only on the change of a stimulus (such as sound, lighting) but also on the original intensity of the stimulus. Specifically, WLD consists of two components: differential excitation and orientation. The differential excitation component is a function of the ratio between two terms: One is the relative intensity differences of a current pixel against its neighbors, the other is the intensity of the current pixel. The orientation component is the gradient orientation of the current pixel. For a given image, we use the two components to construct a concatenated WLD histogram. Experimental results on the Brodatz and KTH-TIPS2-a texture databases show that WLD impressively outperforms the other widely used descriptors (e.g., Gabor and SIFT). In addition, experimental results on human face detection also show a promising performance comparable to the best known results on the MIT+CMU frontal face test set, the AR face data set, and the CMU profile test set. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0162-8828 1939-3539 |
DOI: | 10.1109/TPAMI.2009.155 |