A Compact Series-Connected SiC MOSFETs Module and Its Application in High Voltage Nanosecond Pulse Generator

Nanosecond pulse discharge plasma has many prospects in industrial applications, and high-voltage repetitive nanosecond pulse generators with compact design and light weight have become one of the key issues limiting its development in some applications. This paper presents a high voltage series-con...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on industrial electronics (1982) Vol. 66; no. 12; pp. 9238 - 9247
Main Authors: Pang, Lei, Long, Tianjun, He, Kun, Huang, Yongrui, Zhang, Qiaogen
Format: Journal Article
Language:English
Published: New York IEEE 01-12-2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Nanosecond pulse discharge plasma has many prospects in industrial applications, and high-voltage repetitive nanosecond pulse generators with compact design and light weight have become one of the key issues limiting its development in some applications. This paper presents a high voltage series-connected silicon carbide (SiC) metal-oxide -semiconductor field effect transistor ( MOSFET s) module which can be served as the main switch in a repetitive high-voltage nanosecond pulse generator. This kind of series-connected MOSFET s module with only single external gate driver requiring very few components is very suitable for compact assembly. By analyzing the working principle, three topologies of series-connected MOSFET s module are proposed. The switching behaviors of the three different topologies with four SiC MOSFET s series-connected are compared experimentally. The variation of switching characteristics of series-connection SiC MOSFET s module with different numbers of devices are investigated. The layout is also optimized to shorten pulse front time and improve output pulse quality. Furthermore, a 10 kV SiC MOSFET s module with a turn- on transition time ∼10 ns is developed. The double pulse test result demonstrates excellent switching performances. Finally, a compact and high-voltage pulse generator composed of three 10 kV SiC MOSFET s module is tailored, with a typical rise time ∼40 ns and peak voltage of ∼30 kV.
ISSN:0278-0046
1557-9948
DOI:10.1109/TIE.2019.2891441