Biomass Integrated Gasification Combined Cycle for heat and power at ethanol plants

Biomass Integrated Gasification Combined Cycle (BIGCC) technology can be used to generate process heat and significant amounts of electricity at dry-grind ethanol facilities by utilizing the ethanol process co-products and other biomass sources. These systems can reduce fuel costs for ethanol plants...

Full description

Saved in:
Bibliographic Details
Published in:Energy conversion and management Vol. 50; no. 7; pp. 1682 - 1690
Main Authors: De Kam, Matthew J., Vance Morey, R., Tiffany, Douglas G.
Format: Journal Article
Language:English
Published: Kidlington Elsevier Ltd 01-07-2009
Elsevier
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Biomass Integrated Gasification Combined Cycle (BIGCC) technology can be used to generate process heat and significant amounts of electricity at dry-grind ethanol facilities by utilizing the ethanol process co-products and other biomass sources. These systems can reduce fuel costs for ethanol plants, improve the renewable energy balance of dry-grind ethanol production, and provide reliable renewable electricity for process use and for sale to the local utility. An Aspen Plus model of the dry-grind ethanol process is used as the basis for a subsequent gasification system model. A twin fluidized bed steam gasification configuration based on the SilvaGas process is used to generate synthesis gas. The results show that a dry-grind ethanol facility with a capacity of 190 million liters per year could produce 30.4 MW e of power while supplying all its process heat needs using ethanol co-products and corn cobs. This configuration results in a three fold improvement in the amount of renewable energy produced per unit of fossil energy used compared to a conventional ethanol production process using natural gas.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0196-8904
1879-2227
DOI:10.1016/j.enconman.2009.03.031