Hydromagnetic transport phenomena from a stretching or shrinking nonlinear nanomaterial sheet with Navier slip and convective heating: A model for bio-nano-materials processing

Steady two-dimensional magnetohydrodynamic laminar free convective boundary layer slip flow of an electrically conducting Newtonian nanofluid from a translating stretching/shrinking sheet in a quiescent fluid is studied. A convective heating boundary condition is incorporated. The transport equation...

Full description

Saved in:
Bibliographic Details
Published in:Journal of magnetism and magnetic materials Vol. 368; pp. 252 - 261
Main Authors: Uddin, M.J., Bég, O. Anwar, Amin, N.
Format: Journal Article
Language:English
Published: Amsterdam Elsevier B.V 01-11-2014
Elsevier
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Steady two-dimensional magnetohydrodynamic laminar free convective boundary layer slip flow of an electrically conducting Newtonian nanofluid from a translating stretching/shrinking sheet in a quiescent fluid is studied. A convective heating boundary condition is incorporated. The transport equations along with the boundary conditions are first converted into dimensionless form and following the implementation of a linear group of transformations, the similarity governing equations are developed. The transformed equations are solved numerically using the Runge–Kutta–Fehlberg fourth fifth order method from Maple. Validation of the Maple solutions is achieved with previous non-magnetic published results. The effects of the emerging thermophysical parameters; namely, stretching/shrinking, velocity slip, magnetic field, convective heat transfer and buoyancy ratio parameters, on the dimensionless velocity, temperature and concentration (nanoparticle fraction) are depicted graphically and interpreted at length. It is found that velocity increases whilst temperature and concentration reduce with the velocity slip. Magnetic field causes to reduce velocity and enhances temperature and concentration. Velocity, temperature as well as concentration rises with convective heating parameter. The study is relevant to the synthesis of bio-magnetic nanofluids of potential interest in wound treatments, skin repair and smart coatings for biological devices. •This paper analyses MHD slip flow of nofluid with convective boundary conditions.•Group method is used to transform governing equations into similarity equations.•The Runge–Kutta–Fehlberg method is used for numerical computations.•The study is relevant to synthesis of bio-magnetic nanofluids.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0304-8853
DOI:10.1016/j.jmmm.2014.05.041