Design of a 32 b monolithic microprocessor based on GaAs HMESFET technology

This paper examines the design of a 32-b GaAs Fast RISC microprocessor (F-RISC/I). F-RISC/I is a single chip GaAs Heterojunction MESFET (HMESFET) processor targeted for implementation on a multichip module (MCM) together with cache memories. The CPU architecture, circuit design. Implementation, and...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on very large scale integration (VLSI) systems Vol. 5; no. 2; pp. 238 - 243
Main Authors: Tien, C.-K.V., Lewis, K., Greub, H.J., Tsen, T., McDonald, J.F.
Format: Journal Article
Language:English
Published: Piscataway, NJ IEEE 01-06-1997
Institute of Electrical and Electronics Engineers
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper examines the design of a 32-b GaAs Fast RISC microprocessor (F-RISC/I). F-RISC/I is a single chip GaAs Heterojunction MESFET (HMESFET) processor targeted for implementation on a multichip module (MCM) together with cache memories. The CPU architecture, circuit design. Implementation, and testing are optimized for a seven-stage instruction pipeline implemented with GaAs super-buffered FET logic (SBFL). We have been able to verify novel GaAs SBFL standard cells and compare measured CPU performance with performance estimates based on circuit and device models. The prototype 32-b microprocessor has been implemented using an automated standard cell approach because of time constraints and fabricated using an experimental process by Rockwell International. The CPU chip integrates 92340 transistors on a 7/spl times/7 mm/sup 2/ die and dissipates 6.13 W at 180 MHz. Test results from a prototype fabrication run have demonstrated the operation of the ALU, the program counter, and the register file with delays below 6, 5, and 3.4 ns, respectively. The successful modeling and verification indicate that a 0.5 /spl mu/m HMESFET implementation of F-RISC/I could achieve a peak performance of 350 MHz. The wiring delays account for 42% of the critical path delay.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1063-8210
1557-9999
DOI:10.1109/92.585228