Fluid-to-fluid modeling of natural circulation boiling loops for stability analysis
Gravity driven flows may induce oscillations influencing the stability of natural circulation nuclear boiling water reactors. To experimentally study such phenomenon, a facility based on fluid-to-fluid downscaling modeling is proposed. New design criteria are developed for that purpose. It is found...
Saved in:
Published in: | International journal of heat and mass transfer Vol. 51; no. 3; pp. 566 - 575 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
Oxford
Elsevier Ltd
01-02-2008
Elsevier |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Gravity driven flows may induce oscillations influencing the stability of natural circulation nuclear boiling water reactors. To experimentally study such phenomenon, a facility based on fluid-to-fluid downscaling modeling is proposed. New design criteria are developed for that purpose. It is found that a unique geometrical scale has to be used for all radial and axial dimensions. Moreover, the geometry and the time scaling are not independent each other. A Freon-based downscaled version of the economical simplified boiling water reactor (ESBWR) is designed and constructed based on the derived scaling rules. Experimental results show good agreement with numerical simulations regarding the static behavior and also the stability performance. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0017-9310 1879-2189 |
DOI: | 10.1016/j.ijheatmasstransfer.2007.05.027 |