Ultra-Low Cycle Fatigue Life Prediction Model—A Review
This article is a review of models for predicting ultra-low cycle fatigue life. In the article, the life prediction models are divided into three types: (1) microscopic ductile fracture models based on cavity growth and cavity merger; (2) fracture models based on porous plasticity; and (3) ductile f...
Saved in:
Published in: | Metals (Basel ) Vol. 13; no. 6; p. 1142 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
Basel
MDPI AG
01-06-2023
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This article is a review of models for predicting ultra-low cycle fatigue life. In the article, the life prediction models are divided into three types: (1) microscopic ductile fracture models based on cavity growth and cavity merger; (2) fracture models based on porous plasticity; and (3) ductile fracture models based on continuum damage mechanics. Furthermore, the article provides a critical assessment of the current state of research on ultra-low cycle fatigue life prediction models, highlighting the limitations and challenges faced by each model type. Ultimately, this review aims to provide a comprehensive overview of the different models available for predicting ultra-low cycle fatigue life and to guide future research in this important area of materials science and engineering. |
---|---|
ISSN: | 2075-4701 2075-4701 |
DOI: | 10.3390/met13061142 |