The clustering of the SDSS main galaxy sample – II. Mock galaxy catalogues and a measurement of the growth of structure from redshift space distortions at z = 0.15

We measure redshift space distortions in the two-point correlation function of a sample of 63 163 spectroscopically identified galaxies with z < 0.2, an epoch where there are currently only limited measurements, from the Sloan Digital Sky Survey Data Release 7 main galaxy sample (MGS). Our sample...

Full description

Saved in:
Bibliographic Details
Published in:Monthly notices of the Royal Astronomical Society Vol. 449; no. 1; pp. 848 - 866
Main Authors: Howlett, Cullan, Ross, Ashley J., Samushia, Lado, Percival, Will J., Manera, Marc
Format: Journal Article
Language:English
Published: London Oxford University Press 01-05-2015
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We measure redshift space distortions in the two-point correlation function of a sample of 63 163 spectroscopically identified galaxies with z < 0.2, an epoch where there are currently only limited measurements, from the Sloan Digital Sky Survey Data Release 7 main galaxy sample (MGS). Our sample, which we denote MGS, covers 6813 deg2 with an effective redshift z eff = 0.15 and is described in our companion paper (Paper I), which concentrates on baryon acoustic oscillation (BAO) measurements. In order to validate the fitting methods used in both papers, and derive errors, we create and analyse 1000 mock catalogues using a new algorithm called picola to generate accurate dark matter fields. Haloes are then selected using a friends-of-friends algorithm, and populated with galaxies using a halo-occupation distribution fitted to the data. Using errors derived from these mocks, we fit a model to the monopole and quadrupole moments of the MGS correlation function. If we assume no Alcock–Paczynski (AP) effect (valid at z = 0.15 for any smooth model of the expansion history), we measure the amplitude of the velocity field, fσ8, at z = 0.15 to be $0.49_{-0.14}^{+0.15}$ . We also measure fσ8 including the AP effect. This latter measurement can be freely combined with recent cosmic microwave background results to constrain the growth index of fluctuations, γ. Assuming a background Λ cold dark matter cosmology and combining with current BAO data, we find γ = 0.64 ± 0.09, which is consistent with the prediction of general relativity (γ ≈ 0.55), though with a slight preference for higher γ and hence models with weaker gravitational interactions.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0035-8711
1365-2966
DOI:10.1093/mnras/stu2693