NAFLD and Atherosclerosis Are Prevented by a Natural Dietary Supplement Containing Curcumin, Silymarin, Guggul, Chlorogenic Acid and Inulin in Mice Fed a High-Fat Diet

Non-alcoholic fatty liver disease (NAFLD) confers an increased risk of cardiovascular diseases. NAFDL is associated with atherogenic dyslipidemia, inflammation and renin-angiotensin system (RAS) imbalance, which in turn lead to atherosclerotic lesions. In the present study, the impact of a natural d...

Full description

Saved in:
Bibliographic Details
Published in:Nutrients Vol. 9; no. 5; p. 492
Main Authors: Amato, Antonella, Caldara, Gaetano-Felice, Nuzzo, Domenico, Baldassano, Sara, Picone, Pasquale, Rizzo, Manfredi, Mulè, Flavia, Di Carlo, Marta
Format: Journal Article
Language:English
Published: Switzerland MDPI AG 13-05-2017
MDPI
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Non-alcoholic fatty liver disease (NAFLD) confers an increased risk of cardiovascular diseases. NAFDL is associated with atherogenic dyslipidemia, inflammation and renin-angiotensin system (RAS) imbalance, which in turn lead to atherosclerotic lesions. In the present study, the impact of a natural dietary supplement (NDS) containing , silymarin, guggul, chlorogenic acid and inulin on NAFLD and atherosclerosis was evaluated, and the mechanism of action was examined. C57BL/6 mice were fed an HFD for 16 weeks; half of the mice were simultaneously treated with a daily oral administration (os) of the NDS. NAFLD and atherogenic lesions in aorta and carotid artery (histological analysis), hepatic expression of genes involved in the NAFLD (PCR array), hepatic angiotensinogen (AGT) and AT₁R mRNA expression (real-time PCR) and plasma angiotensin (ANG)-II levels (ELISA) were evaluated. In the NDS group, steatosis, aortic lesions or carotid artery thickening was not observed. PCR array showed upregulation of some genes involved in lipid metabolism and anti-inflammatory activity (Cpt2, Ifng) and downregulation of some genes involved in pro-inflammatory response and in free fatty acid up-take (Fabp5, Socs3). Hepatic AGT, AT₁R mRNA and ANG II plasma levels were significantly lower with respect to the untreated-group. Furthermore, NDS inhibited the dyslipidemia observed in the untreated animals. Altogether, these results suggest that NDS prevents NAFLD and atherogenesis by modulating the expression of different genes involved in NAFLD and avoiding RAS imbalance.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contribute equally to this work.
ISSN:2072-6643
2072-6643
DOI:10.3390/nu9050492