NAFLD and Atherosclerosis Are Prevented by a Natural Dietary Supplement Containing Curcumin, Silymarin, Guggul, Chlorogenic Acid and Inulin in Mice Fed a High-Fat Diet
Non-alcoholic fatty liver disease (NAFLD) confers an increased risk of cardiovascular diseases. NAFDL is associated with atherogenic dyslipidemia, inflammation and renin-angiotensin system (RAS) imbalance, which in turn lead to atherosclerotic lesions. In the present study, the impact of a natural d...
Saved in:
Published in: | Nutrients Vol. 9; no. 5; p. 492 |
---|---|
Main Authors: | , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Switzerland
MDPI AG
13-05-2017
MDPI |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Non-alcoholic fatty liver disease (NAFLD) confers an increased risk of cardiovascular diseases. NAFDL is associated with atherogenic dyslipidemia, inflammation and renin-angiotensin system (RAS) imbalance, which in turn lead to atherosclerotic lesions. In the present study, the impact of a natural dietary supplement (NDS) containing
, silymarin, guggul, chlorogenic acid and inulin on NAFLD and atherosclerosis was evaluated, and the mechanism of action was examined. C57BL/6 mice were fed an HFD for 16 weeks; half of the mice were simultaneously treated with a daily oral administration (os) of the NDS. NAFLD and atherogenic lesions in aorta and carotid artery (histological analysis), hepatic expression of genes involved in the NAFLD (PCR array), hepatic angiotensinogen (AGT) and AT₁R mRNA expression (real-time PCR) and plasma angiotensin (ANG)-II levels (ELISA) were evaluated. In the NDS group, steatosis, aortic lesions or carotid artery thickening was not observed. PCR array showed upregulation of some genes involved in lipid metabolism and anti-inflammatory activity (Cpt2, Ifng) and downregulation of some genes involved in pro-inflammatory response and in free fatty acid up-take (Fabp5, Socs3). Hepatic AGT, AT₁R mRNA and ANG II plasma levels were significantly lower with respect to the untreated-group. Furthermore, NDS inhibited the dyslipidemia observed in the untreated animals. Altogether, these results suggest that NDS prevents NAFLD and atherogenesis by modulating the expression of different genes involved in NAFLD and avoiding RAS imbalance. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contribute equally to this work. |
ISSN: | 2072-6643 2072-6643 |
DOI: | 10.3390/nu9050492 |