Post-aeration of anaerobically digested sewage sludge for advanced COD and nitrogen removal: results and cost-benefit analysis at large-scale

At a large Austrian municipal wastewater treatment plant enhanced stabilisation of anaerobically digested sewage sludge was required in order to get a permit for landfill disposal of the dewatered stabilized sludge. By implementing a post-aeration treatment after anaerobic digestion the organic cont...

Full description

Saved in:
Bibliographic Details
Published in:Water science and technology Vol. 57; no. 7; pp. 1087 - 1094
Main Authors: Parravicini, V, Svardal, K, Kroiss, H
Format: Journal Article
Language:English
Published: England IWA Publishing 01-01-2008
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:At a large Austrian municipal wastewater treatment plant enhanced stabilisation of anaerobically digested sewage sludge was required in order to get a permit for landfill disposal of the dewatered stabilized sludge. By implementing a post-aeration treatment after anaerobic digestion the organic content of the anaerobically well digested sludge can be decreased by 16%. Investigations at this plant showed that during digested sludge post-aeration anoxic phases are needed to provide stable process conditions. In this way the pH value can be kept in a more favourable range for micro-organisms and concrete structures. Additionally, under the process conditions applied nitrite accumulation would inhibit the stabilisation process if denitrification is not adequately applied. By optimising the aeration/pause ratio approximately 45% of total nitrogen in digested sludge can be removed. NH4-removal occurs through nitrification and denitrification with an efficiency of 98%. This significantly improves nitrogen removal efficiency at the wastewater treatment plant. The costs/benefit analysis shows that post-aeration of digested sludge results in an increase of total annual costs for wastewater treatment of only 0.84%, corresponding to 0.19 Euro/pe/a. Specific costs for nitrogen removal (0.32 Euro/kgN) are comparable with other biological processes for N-removal in reject water.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0273-1223
1996-9732
DOI:10.2166/wst.2008.211