Computational Fluid Dynamics and Vascular Access

: Anastomotic intimal hyperplasia caused by unphysiological hemodynamics is generally accepted as a reason for dialysis access graft occlusion. Optimizing the venous anastomosis can improve the patency rate of arteriovenous grafts. The purpose of this study was to examine, evaluate, and characterize...

Full description

Saved in:
Bibliographic Details
Published in:Artificial organs Vol. 26; no. 7; pp. 571 - 575
Main Authors: Krueger, Ulf, Zanow, Juergen, Scholz, Hans
Format: Journal Article
Language:English
Published: Boston, MA, USA Blackwell Science Inc 01-07-2002
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:: Anastomotic intimal hyperplasia caused by unphysiological hemodynamics is generally accepted as a reason for dialysis access graft occlusion. Optimizing the venous anastomosis can improve the patency rate of arteriovenous grafts. The purpose of this study was to examine, evaluate, and characterize the local hemodynamics and, in particular, the wall shear stresses in conventional venous end‐to‐side anastomosis and in patch form anastomosis (Venaflo) by three‐dimensional computational fluid dynamics (CFD). We investigated the conventional form of end‐to‐side anastomosis and a new patch form by numerical simulation of blood flow. The numerical simulation was done with a finite volume‐based algorithm. The anastomotic forms were constructed with usual size and fixed walls. Subdividing the flow domain into multiple control volumes solved the fundamental equations. The boundary conditions were identical for both forms. The velocity profile of the patch form is better than that for the conventional form. The region of high static pressure caused by flow stagnation is reduced on the vein floor. The anastomotic wall shear stress is decreased. The results of this study strongly support patch form use to reduce the incidence of intimal hyperplasia and venous anastomotic stenoses.
Bibliography:ark:/67375/WNG-QG4CRNWW-V
istex:7F1E59768E0C32DA908A15E8375B4A8C83919D2A
ArticleID:tx4
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0160-564X
1525-1594
DOI:10.1046/j.1525-1594.2002.07078.x