Interactions of superoxide anion with enzyme radicals: kinetics of reaction with lysozyme tryptophan radicals and corresponding effects on tyrosine electron transfer

The kinetics of O2*- reaction with semi-oxidized tryptophan radicals in lysozyme, Trp*(Lyz) have been investigated at various pHs and conformational states by pulse radiolysis. The Trp*(Lyz) radicals were formed by Br2*- oxidation of the 3-4 exposed Trp residues in the protein. At pH lower than 6.2,...

Full description

Saved in:
Bibliographic Details
Published in:Free radical research Vol. 33; no. 4; p. 383
Main Authors: Santus, R, Patterson, L K, Hug, G L, Bazin, M, Mazière, J C, Morlière, P
Format: Journal Article
Language:English
Published: England 01-01-2000
Subjects:
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The kinetics of O2*- reaction with semi-oxidized tryptophan radicals in lysozyme, Trp*(Lyz) have been investigated at various pHs and conformational states by pulse radiolysis. The Trp*(Lyz) radicals were formed by Br2*- oxidation of the 3-4 exposed Trp residues in the protein. At pH lower than 6.2, the apparent bimolecular rate is about 2 x 10(8) M(-1) s(-1); but drops to 8 x 10(7) M(-1) s(-1) or less above pH 6.3 and in CTAC micelles. Similarly, the apparent bimolecular rate constant for the intermolecular Trp*(Lyz) + Trp*(Lyz) recombination reaction is about (4-7 x 10(6) M(-1) s(-1)) at/or below pH 6.2 then drops to 1.3-1.6 x 10(6) M(-1) s(-1) at higher pH or in micelles. This behavior suggests important conformational and/or microenvironmental rearrangement with pH, leading to less accessible semi-oxidized Trp* residues upon Br2*- reaction. The kinetics of Trp*(Lyz) with ascorbate, a reducing species rather larger than O2*- have been measured for comparison. The well-established long range intramolecular electron transfer from Tyr residues to Trp radicals--leading to the repair of the semi-oxidized Trp*(Lyz) and formation of the tyrosyl phenoxyl radical is inhibited by the Trp*(Lyz) + O2*- reaction, as is most of the Trp*(Lyz) + Trp*(Lyz) reaction. However, the kinetic behavior of Trp*(Lyz) suggests that not all oxidized Trp residues are involved in the intermolecular recombination or reaction with O2*-. As the kinetics are found to be quite pH sensitive, this study demonstrates the effect of the protein conformation on O2*- reactivity. To our knowledge, this is the first report on the kinetics of a protein-O2*- reaction not involving the detection of change in the redox state of a prosthetic group to probe the reactivity of the superoxide anion.
ISSN:1071-5762
DOI:10.1080/10715760000300921