A multistate additive relative survival semi-Markov model
Medical researchers are often interested to investigate the relationship between explicative variables and times-to-events such as disease progression or death. Such multiple times-to-events can be studied using multistate models. For chronic diseases, it may be relevant to consider semi-Markov mult...
Saved in:
Published in: | Statistical methods in medical research Vol. 26; no. 4; pp. 1700 - 1711 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
London, England
SAGE Publications
01-08-2017
Sage Publications Ltd |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Medical researchers are often interested to investigate the relationship between explicative variables and times-to-events such as disease progression or death. Such multiple times-to-events can be studied using multistate models. For chronic diseases, it may be relevant to consider semi-Markov multistate models because the transition intensities between two clinical states more likely depend on the time already spent in the current state than on the chronological time. When the cause of death for a patient is unavailable or not totally attributable to the disease, it is not possible to specifically study the associations with the excess mortality related to the disease. Relative survival analysis allows an estimate of the net survival in the hypothetical situation where the disease would be the only possible cause of death. In this paper, we propose a semi-Markov additive relative survival (SMRS) model that combines the multistate and the relative survival approaches. The usefulness of the SMRS model is illustrated by two applications with data from a French cohort of kidney transplant recipients. Using simulated data, we also highlight the effectiveness of the SMRS model: the results tend to those obtained if the different causes of death are known. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0962-2802 1477-0334 |
DOI: | 10.1177/0962280215586456 |