Combining many-objective radiomics and 3D convolutional neural network through evidential reasoning to predict lymph node metastasis in head and neck cancer

Lymph node metastasis (LNM) is a significant prognostic factor in patients with head and neck cancer, and the ability to predict it accurately is essential to optimizing treatment. Positron emission tomography (PET) and computed tomography (CT) imaging are routinely used to identify LNM. Although la...

Full description

Saved in:
Bibliographic Details
Published in:Physics in medicine & biology Vol. 64; no. 7; p. 075011
Main Authors: Chen, Liyuan, Zhou, Zhiguo, Sher, David, Zhang, Qiongwen, Shah, Jennifer, Pham, Nhat-Long, Jiang, Steve, Wang, Jing
Format: Journal Article
Language:English
Published: England 29-03-2019
Subjects:
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Lymph node metastasis (LNM) is a significant prognostic factor in patients with head and neck cancer, and the ability to predict it accurately is essential to optimizing treatment. Positron emission tomography (PET) and computed tomography (CT) imaging are routinely used to identify LNM. Although large or highly active lymph nodes (LNs) have a high probability of being positive, identifying small or less reactive LNs is challenging. The accuracy of LNM identification strongly depends on the physician's experience, so an automatic prediction model for LNM based on CT and PET images is warranted to assist LMN identification across care providers and facilities. Radiomics and deep learning are the two promising imaging-based strategies for node malignancy prediction. Radiomics models are built based on handcrafted features, while deep learning learns the features automatically. To build a more reliable model, we proposed a hybrid predictive model that takes advantages of both radiomics and deep learning based strategies. We designed a new many-objective radiomics (MaO-radiomics) model and a 3D convolutional neural network (3D-CNN) that fully utilizes spatial contextual information, and we fused their outputs through an evidential reasoning (ER) approach. We evaluated the performance of the hybrid method for classifying normal, suspicious and involved LNs. The hybrid method achieves an accuracy (ACC) of 0.88 while XmasNet and Radiomics methods achieve 0.81 and 0.75, respectively. The hybrid method provides a more accurate way for predicting LNM using PET and CT.
ISSN:1361-6560
DOI:10.1088/1361-6560/ab083a