Fast & Energy Efficient Start-Up of Crystal Oscillators by Self-Timed Energy Injection
Crystal oscillators take a long time and, more importantly, a significant amount of energy to start-up. This article presents a self-timed energy injection technique to quickly start-up a crystal oscillator, for very low energy consumption. This is achieved without a power-hungry oscillator to provi...
Saved in:
Published in: | IEEE journal of solid-state circuits Vol. 54; no. 11; pp. 3107 - 3117 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
New York
IEEE
01-11-2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Crystal oscillators take a long time and, more importantly, a significant amount of energy to start-up. This article presents a self-timed energy injection technique to quickly start-up a crystal oscillator, for very low energy consumption. This is achieved without a power-hungry oscillator to provide the injection signal. The design considerations are discussed, and a prototype crystal oscillator using the proposed technique is integrated into a 22-nm fully depleted silicon-on-insulator (FD-SOI) technology. Connected to a 50-MHz crystal, the manufactured IC achieves a start-up time of 6 μs, for an energy consumption of just 3.7 nJ. |
---|---|
ISSN: | 0018-9200 1558-173X |
DOI: | 10.1109/JSSC.2019.2933143 |