Remote Sensing Monitoring of the Pietrafitta Earth Flows in Southern Italy: An Integrated Approach Based on Multi-Sensor Data

Earth flows are complex gravitational events characterised by a heterogeneous displacement pattern in terms of scale, style, and orientation. As a result, their monitoring, for both knowledge and emergency purposes, represents a relevant challenge in the field of engineering geology. This paper aims...

Full description

Saved in:
Bibliographic Details
Published in:Remote sensing (Basel, Switzerland) Vol. 15; no. 4; p. 1138
Main Authors: Mazza, Davide, Cosentino, Antonio, Romeo, Saverio, Mazzanti, Paolo, Guadagno, Francesco M., Revellino, Paola
Format: Journal Article
Language:English
Published: Basel MDPI AG 01-02-2023
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Earth flows are complex gravitational events characterised by a heterogeneous displacement pattern in terms of scale, style, and orientation. As a result, their monitoring, for both knowledge and emergency purposes, represents a relevant challenge in the field of engineering geology. This paper aims to assess the capabilities, peculiarities, and limitations of different remote sensing monitoring techniques through their application to the Pietrafitta earth flow (Southern Italy). The research compared and combined data collected during the main landslide reactivations by different ground-based remote sensors such as Robotic Total Station (R-TS), Terrestrial Synthetic Aperture Radar Interferometry (T-InSAR), and Terrestrial Laser Scanner (TLS), with data being derived by satellite-based Digital Image Correlation (DIC) analysis. The comparison between R-TS and T-InSAR measurements showed that, despite their different spatial and temporal resolutions, the observed deformation trends remain approximately coherent. On the other hand, DIC analysis was able to detect a kinematic process, such as the expansion of the landslide channel, which was not detected by the other techniques used. The results suggest that, when faced with complex events, the use of a single monitoring technique may not be enough to fully observe and understand the processes taking place. Therefore, the limitations of each different technique alone can be solved by a multi-sensor monitoring approach.
ISSN:2072-4292
2072-4292
DOI:10.3390/rs15041138