Simple and Robust MPPT Current Control of a Wound Rotor Synchronous Wind Generator
In the search for efficient non-permanent magnet variable-speed wind generator solutions, this paper proposes a maximum power point tracking (MPPT) current-control method for a wound rotor synchronous wind generator. The focus is on direct-drive, medium-speed wind generators. In the proposed method,...
Saved in:
Published in: | Energies (Basel) Vol. 16; no. 7; p. 3290 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
Basel
MDPI AG
01-04-2023
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In the search for efficient non-permanent magnet variable-speed wind generator solutions, this paper proposes a maximum power point tracking (MPPT) current-control method for a wound rotor synchronous wind generator. The focus is on direct-drive, medium-speed wind generators. In the proposed method, the currents of the wound rotor synchronous generator (WRSG) are optimally adjusted according to the generator speed to ensure maximum power generation from the wind turbine without needing information on wind speed. The design, modeling, and simulation of the MPPT current controllers are done in Matlab/Simulink with the WRSG in the synchronous reference frame. The controller is put to the test using different wind speed profiles between cut-in and rated speeds. The simulation results indicate that the proposed current control method is simple, effective, and robust, suggesting its practical implementation. To validate the simulation results, experimental work on a 4.2 kW WRSG prototype system is presented to demonstrate the stability and robustness of the MPPT current control method in operating the turbine at or near the maximum power point. |
---|---|
ISSN: | 1996-1073 1996-1073 |
DOI: | 10.3390/en16073290 |