Improved Generalized IHS Based on Total Variation for Pansharpening

Pansharpening refers to the fusion of a panchromatic (PAN) and a multispectral (MS) image aimed at generating a high-quality outcome over the same area. This particular image fusion problem has been widely studied, but until recently, it has been challenging to balance the spatial and spectral fidel...

Full description

Saved in:
Bibliographic Details
Published in:Remote sensing (Basel, Switzerland) Vol. 15; no. 11; p. 2945
Main Authors: Zhang, Xuefeng, Dai, Xiaobing, Zhang, Xuemin, Hu, Yuchen, Kang, Yingdong, Jin, Guang
Format: Journal Article
Language:English
Published: Basel MDPI AG 01-06-2023
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Pansharpening refers to the fusion of a panchromatic (PAN) and a multispectral (MS) image aimed at generating a high-quality outcome over the same area. This particular image fusion problem has been widely studied, but until recently, it has been challenging to balance the spatial and spectral fidelity in fused images. The spectral distortion is widespread in the component substitution-based approaches due to the variation in the intensity distribution of spatial components. We lightened the idea using the total variation optimization to improve upon a novel GIHS-TV framework for pansharpening. The framework drew the high spatial fidelity from the GIHS scheme and implemented it with a simpler variational expression. An improved L1-TV constraint to the new spatial–spectral information was introduced to the GIHS-TV framework, along with its fast implementation. The objective function was solved by the Iteratively Reweighted Norm (IRN) method. The experimental results on the “PAirMax” dataset clearly indicated that GIHS-TV could effectively reduce the spectral distortion in the process of component substitution. Our method has achieved excellent results in visual effects and evaluation metrics.
ISSN:2072-4292
2072-4292
DOI:10.3390/rs15112945