Melittin exerts opposing effects on short- and long-range dynamics in bicontinuous microemulsions

[Display omitted] Bicontinuous microemulsions (BμEs) are a promising biomembrane mimetic system for investigating the behavior of antimicrobial peptides (AMPs) and their delivery to open wounds to combat antibiotic-resistant microorganisms. The properties of the BμE host are in turn affected by the...

Full description

Saved in:
Bibliographic Details
Published in:Journal of colloid and interface science Vol. 590; pp. 94 - 102
Main Authors: Sharma, V.K., Hayes, D.G., Urban, V.S., O'Neill, H., Tyagi, M., Mamontov, E.
Format: Journal Article
Language:English
Published: United States Elsevier Inc 15-05-2021
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:[Display omitted] Bicontinuous microemulsions (BμEs) are a promising biomembrane mimetic system for investigating the behavior of antimicrobial peptides (AMPs) and their delivery to open wounds to combat antibiotic-resistant microorganisms. The properties of the BμE host are in turn affected by the guest AMP and can deviate from those of the unperturbed BμEs, especially at higher AMP concentrations. Here we report the effect of an archetypal AMP, melittin, over a wide range of concentrations, on the nanoscopic dynamics of BμEs formed by water/sodium dodecyl sulfate (SDS)/1-pentanol/dodecane, investigated using quasi-elastic neutron scattering (QENS). Two distinct motions are observed, namely, (i) the lateral motion of the surfactant on the surface of the oil channels and (ii) the internal motion of the surfactants. It is found that melittin restricts both the lateral and the internal motion, thereby acting as a stiffening agent. The lateral motion is more strongly affected, at low concentration of melittin. The lateral diffusion coefficient decreased sharply, approaching a constant value at higher melittin concentration. These results are in sharp contrast with the recent dynamic light scattering and neutron spin echo results which showed that at the length and time scales longer than those probed in the current work, melittin enhanced the long-range collective and local undulation motions of BμEs. Considered together, our results indicate that incorporation of melittin modulates the dynamics differently depending on the spatial and temporal regimes, in which the dynamics are being probed. The addition of melittin at low concentrations increased the magnitude of the zeta potential, but further increase of the melittin concentration decreased it. This suggests that addition of melittin at low concentrations led to increase in the surfactant concentration, but did not affect the negative charge per surfactant molecule, while further addition of melittin led to ion pairing of melittin with the oppositely charged surfactant. This study therefore demonstrates how the addition of melittin hinders the lateral motion of surfactants as a result of the strong association between melittin and SDS, suggesting that the release of AMPs from BμE-based delivery vehicles may be hindered.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0021-9797
1095-7103
DOI:10.1016/j.jcis.2021.01.032