Photophysical comparative study of amylose and polyvinyle pyrrolidone/single walled carbon nanotubes complex
Progressive addition of hydroxypropylated amylose (AmH), from 0.05 wt% to 4.5 wt%, to single-walled carbon nanotubes (SWNTs) in aqueous surfactant suspensions quenches the intrinsic near Infra-Red fluorescence of semiconducting SWNTs while dispersions obtained with a same amount of polyvinylpyrrolid...
Saved in:
Published in: | Physical chemistry chemical physics : PCCP Vol. 11; no. 38; p. 8626 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
England
01-01-2009
|
Subjects: | |
Online Access: | Get more information |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Progressive addition of hydroxypropylated amylose (AmH), from 0.05 wt% to 4.5 wt%, to single-walled carbon nanotubes (SWNTs) in aqueous surfactant suspensions quenches the intrinsic near Infra-Red fluorescence of semiconducting SWNTs while dispersions obtained with a same amount of polyvinylpyrrolidone (PVP) remain luminescent. Near Infra-Red emission spectroscopy (fluorescence and Raman scattering) of the samples is used to characterize the supramolecular organization of these polymer/SWNT complexes. The SWNTs are found to be wrapped by the PVP chains and not by the AmH chains which rather form AmH/surfactant/SWNTs complexes. In PVP/SWNTs dispersion, the fluorescence line position and intensity are affected by dielectric screening. In the case of AmH/surfactant/SWNTs complex, dielectric screening plays also a role but quenching occurs above about 3 wt% of AmH. We attribute the quenching to the formation of a "composite like" microstructure by opposition to stabilized dispersion. |
---|---|
ISSN: | 1463-9084 |
DOI: | 10.1039/b907948c |