β-Arrestins regulate a Ral-GDS-Ral effector pathway that mediates cytoskeletal reorganization
beta-Arrestins are important in chemoattractant receptor-induced granule release, a process that may involve Ral-dependent regulation of the actin cytoskeleton. We have identified the Ral GDP dissociation stimulator (Ral-GDS) as a beta-arrestin-binding protein by yeast two-hybrid screening and co-im...
Saved in:
Published in: | Nature cell biology Vol. 4; no. 8; pp. 547 - 555 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
England
Nature Publishing Group
01-08-2002
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | beta-Arrestins are important in chemoattractant receptor-induced granule release, a process that may involve Ral-dependent regulation of the actin cytoskeleton. We have identified the Ral GDP dissociation stimulator (Ral-GDS) as a beta-arrestin-binding protein by yeast two-hybrid screening and co-immunoprecipitation from human polymorphonuclear neutrophilic leukocytes (PMNs). Under basal conditions, Ral-GDS is localized to the cytosol and remains inactive in a complex formed with beta-arrestins. In response to formyl-Met-Leu-Phe (fMLP) receptor stimulation, beta-arrestin Ral-GDS protein complexes dissociate and Ral-GDS translocates with beta-arrestin from the cytosol to the plasma membrane, resulting in the Ras-independent activation of the Ral effector pathway required for cytoskeletal rearrangement. The subsequent re-association of beta-arrestin Ral-GDS complexes is associated with the inactivation of Ral signalling. Thus, beta-arrestins regulate multiple steps in the Ral-dependent processes that result in chemoattractant-induced cytoskeletal reorganization. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1465-7392 1476-4679 |
DOI: | 10.1038/ncb821 |