Self-Powered Acceleration Sensor for Distance Prediction via Triboelectrification
Accurately predicting the distance an object will travel to its destination is very important in various sports. Acceleration sensors as a means of real-time monitoring are gaining increasing attention in sports. Due to the low energy output and power density of Triboelectric Nanogenerators (TENGs),...
Saved in:
Published in: | Sensors (Basel, Switzerland) Vol. 24; no. 12; p. 4021 |
---|---|
Main Authors: | , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Switzerland
MDPI AG
20-06-2024
MDPI |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Accurately predicting the distance an object will travel to its destination is very important in various sports. Acceleration sensors as a means of real-time monitoring are gaining increasing attention in sports. Due to the low energy output and power density of Triboelectric Nanogenerators (TENGs), recent efforts have focused on developing various acceleration sensors. However, these sensors suffer from significant drawbacks, including large size, high complexity, high power input requirements, and high cost. Here, we described a portable and cost-effective real-time refreshable strategy design comprising a series of individually addressable and controllable units based on TENGs embedded in a flexible substrate. This results in a highly sensitive, low-cost, and self-powered acceleration sensor. Putting, which accounts for nearly half of all strokes played, is obviously an important component of the golf game. The developed acceleration sensor has an accuracy controlled within 5%. The initial velocity and acceleration of the forward movement of a rolling golf ball after it is hit by a putter can be displayed, and the stopping distance is quickly calculated and predicted in about 7 s. This research demonstrates the application of the portable TENG-based acceleration sensor while paving the way for designing portable, cost-effective, scalable, and harmless ubiquitous self-powered acceleration sensors. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1424-8220 1424-8220 |
DOI: | 10.3390/s24124021 |