Echography of young stars reveals their evolution

We demonstrate that a seismic analysis of stars in their earliest evolutionary phases is a powerful method with which to identify young stars and distinguish their evolutionary states. The early star that is born from the gravitational collapse of a molecular cloud reaches at some point sufficient t...

Full description

Saved in:
Bibliographic Details
Published in:Science (American Association for the Advancement of Science) Vol. 345; no. 6196; pp. 550 - 553
Main Authors: Zwintz, K., Fossati, L., Ryabchikova, T., Guenther, D., Aerts, C., Barnes, T. G., Themeßl, N., Lorenz, D., Cameron, C., Kuschnig, R., Pollack-Drs, S., Moravveji, E., Baglin, A., Matthews, J. M., Moffat, A. F. J., Poretti, E., Rainer, M., Rucinski, S. M., Sasselov, D., Weiss, W. W.
Format: Journal Article
Language:English
Published: Washington American Association for the Advancement of Science 01-08-2014
The American Association for the Advancement of Science
American Association for the Advancement of Science (AAAS)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We demonstrate that a seismic analysis of stars in their earliest evolutionary phases is a powerful method with which to identify young stars and distinguish their evolutionary states. The early star that is born from the gravitational collapse of a molecular cloud reaches at some point sufficient temperature, mass, and luminosity to be detected. Accretion stops, and the pre–main sequence star that emerges is nearly fully convective and chemically homogeneous. It will continue to contract gravitationally until the density and temperature in the core are high enough to start nuclear burning of hydrogen. We show that there is a relationship for a sample of young stars between detected pulsation properties and their evolutionary status, illustrating the potential of asteroseismology for the early evolutionary phases.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0036-8075
1095-9203
DOI:10.1126/science.1253645