Extended high temperature Al gettering for improvement and homogenization of minority carrier diffusion lengths in multicrystalline Si
Multicrystalline Si for photovoltaic applications is a very inhomogeneous material with localized regions of high dislocation density and large impurity and precipitate concentrations which limit solar cell efficiency by acting as carrier recombination sites. Due to slow dissolution of precipitates...
Saved in:
Published in: | Solar energy materials and solar cells Vol. 70; no. 2; pp. 231 - 238 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
Amsterdam
Elsevier B.V
15-12-2001
Elsevier |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Multicrystalline Si for photovoltaic applications is a very inhomogeneous material with localized regions of high dislocation density and large impurity and precipitate concentrations which limit solar cell efficiency by acting as carrier recombination sites. Due to slow dissolution of precipitates in multicrystalline Si, these regions cannot be improved by conventional P and Al gettering treatments for removal of metal impurities which give good results for single crystal Si. It is shown that an extended high temperature Al gettering treatment can improve minority carrier diffusion lengths in these low quality regions and homogenize the electrical properties of multicrystalline Si wafers. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0927-0248 1879-3398 |
DOI: | 10.1016/S0927-0248(01)00029-0 |