α-1-antitrypsin gene delivery reduces inflammation, increases T-regulatory cell population size and prevents islet allograft rejection
Antiinflammatory clinical-grade, plasma-derived human α-1 antitrypsin (hAAT) protects islets from allorejection as well as from autoimmune destruction. hAAT also interferes with disease progression in experimental autoimmune encephalomyelitis (EAE) and in collagen-induced arthritis (CIA) mouse model...
Saved in:
Published in: | Molecular medicine (Cambridge, Mass.) Vol. 17; no. 9-10; pp. 1000 - 1011 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
England
ScholarOne
01-09-2011
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Antiinflammatory clinical-grade, plasma-derived human α-1 antitrypsin (hAAT) protects islets from allorejection as well as from autoimmune destruction. hAAT also interferes with disease progression in experimental autoimmune encephalomyelitis (EAE) and in collagen-induced arthritis (CIA) mouse models. hAAT increases IL-1 receptor antagonist expression in human mononuclear cells and T-regulatory (Treg) cell population size in animal models. Clinical-grade hAAT contains plasma impurities, multiple hAAT isoforms and various states of inactive hAAT. We thus wished to establish islet-protective activities and effect on Treg cells of plasmid-derived circulating hAAT in whole animals. Islet function was assessed in mice that received allogeneic islet transplants after mice were given hydrodynamic tail-vein injection with pEF-hAAT, a previously described Epstein-Barr virus (EBV) plasmid construct containing the EBV nuclear antigen 1 (EBNA1) and the family of repeat EBNA1 binding site components (designated "EF") alongside the hAAT gene. Sera collected from hAAT-expressing mice were added to lipopolysaccharide (LPS)-stimulated macrophages to assess macrophage responsiveness. Also, maturation of peritoneal cells from hAAT-expressing mice was evaluated. hAAT-expressing mice accepted islet allografts (n = 11), whereas phosphate-buffered saline-injected animals (n = 11), as well as mice treated with truncated-hAAT-plasmid (n = 6) and untreated animals (n = 20) rapidly rejected islet allografts. In hAAT-expressing animals, local Treg cells were abundant at graft sites, and the IL-1 receptor antagonist was elevated in grafts and circulation. Sera from hAAT-expressing mice, but not control mice, inhibited macrophage responses. Finally, peritoneal cells from hAAT-expressing mice exhibited a semimature phenotype. We conclude that plasmid-derived circulating hAAT protects islet allografts from acute rejection, and human plasma impurities are unrelated to islet protection. Future studies may use this in vivo approach to examine the structure-function characteristics of the protective activities of AAT by manipulation of the hAAT plasmid. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 GS and HM contributed equally to this work. |
ISSN: | 1076-1551 1528-3658 |
DOI: | 10.2119/molmed.2011.00145 |