Resolved Near-infrared Stellar Photometry from the Magellan Telescope for 13 Nearby Galaxies: J-region Asymptotic Giant Branch Method Distances
Abstract We present near-infrared JHK photometry for the resolved stellar populations in 13 nearby galaxies: NGC 6822, IC 1613, NGC 3109, Sextans B, Sextans A, NGC 300, NGC 55, NGC 7793, NGC 247, NGC 5253, Cen A, NGC 1313, and M83, acquired from the 6.5 m Baade–Magellan telescope. We measure distanc...
Saved in:
Published in: | The Astrophysical journal Vol. 967; no. 1; pp. 22 - 39 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Philadelphia
The American Astronomical Society
01-05-2024
IOP Publishing |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract We present near-infrared JHK photometry for the resolved stellar populations in 13 nearby galaxies: NGC 6822, IC 1613, NGC 3109, Sextans B, Sextans A, NGC 300, NGC 55, NGC 7793, NGC 247, NGC 5253, Cen A, NGC 1313, and M83, acquired from the 6.5 m Baade–Magellan telescope. We measure distances to each galaxy using the J-region asymptotic giant branch (JAGB) method, a new standard candle that leverages the constant luminosities of color-selected, carbon-rich AGB stars. While only single-epoch, random-phase photometry is necessary to derive JAGB distances, our photometry is time-averaged over multiple epochs, thereby decreasing the contribution of the JAGB stars’ intrinsic variability to the measured dispersions in their observed luminosity functions. To cross-validate these distances, we also measure near-infrared tip of the red giant branch (TRGB) distances to these galaxies. The residuals obtained from subtracting the distance moduli from the two methods yield an rms scatter of σ JAGB−TRGB = ±0.07 mag. Therefore, all systematics in the JAGB method and TRGB method (e.g., crowding, differential reddening, star formation histories) must be contained within these ±0.07 mag bounds for this sample of galaxies because the JAGB and TRGB distance indicators are drawn from entirely distinct stellar populations and are thus affected by these systematics independently. Finally, the composite JAGB star luminosity function formed from this diverse sample of galaxies is well described by a Gaussian function with a modal value of M J = –6.20 ± 0.003 mag (stat), indicating that the underlying JAGB star luminosity function of a well-sampled full star formation history is highly symmetric and Gaussian based on over 6700 JAGB stars in the composite sample. |
---|---|
Bibliography: | Galaxies and Cosmology AAS51237 |
ISSN: | 0004-637X 1538-4357 |
DOI: | 10.3847/1538-4357/ad32c7 |