A globally convergent approach for blind MIMO adaptive deconvolution

We discuss the blind deconvolution of multiple input/multiple output (MIMO) linear convolutional mixtures and propose a set of hierarchical criteria motivated by the maximum entropy principle. The proposed criteria are based on the constant-modulus (CM) criterion in order to guarantee that all minim...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on signal processing Vol. 49; no. 6; pp. 1166 - 1178
Main Authors: Touzni, A., Fijalkow, I., Larimore, M.G., Treichler, J.R.
Format: Journal Article
Language:English
Published: New York, NY IEEE 01-06-2001
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We discuss the blind deconvolution of multiple input/multiple output (MIMO) linear convolutional mixtures and propose a set of hierarchical criteria motivated by the maximum entropy principle. The proposed criteria are based on the constant-modulus (CM) criterion in order to guarantee that all minima achieve perfectly restoration of different sources. The approach is moreover robust to errors in channel order estimation. Practical implementation is addressed by a stochastic adaptive algorithm with a low computational cost. Complete convergence proofs, based on the characterization of all extrema, are provided. The efficiency of the proposed method is illustrated by numerical simulations.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1053-587X
1941-0476
DOI:10.1109/78.923299