Inhibition of polymorphonuclear leukocyte adherence suppresses no-reflow after focal cerebral ischemia in baboons

While polymorphonuclear leukocytes may contribute to the "no-reflow" phenomenon after focal cardiac and skeletal muscle ischemia/reperfusion, their contribution to acute focal cerebral ischemia is unresolved. We have examined the role of polymorphonuclear leukocytes in microvascular perfus...

Full description

Saved in:
Bibliographic Details
Published in:Stroke (1970) Vol. 23; no. 5; pp. 712 - 718
Main Authors: MORI, E, DEL ZOPPO, G. J, CHAMBERS, J. D, COPELAND, B. R, ARFORS, K. E
Format: Journal Article
Language:English
Published: Hagerstown, MD Lippincott Williams & Wilkins 01-05-1992
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:While polymorphonuclear leukocytes may contribute to the "no-reflow" phenomenon after focal cardiac and skeletal muscle ischemia/reperfusion, their contribution to acute focal cerebral ischemia is unresolved. We have examined the role of polymorphonuclear leukocytes in microvascular perfusion defects after focal cerebral ischemia/reperfusion in a baboon model of reversible middle cerebral artery occlusion with the anti-CD18 monoclonal antibody IB4, which inhibits neutrophil adherence to endothelium. Microvascular patency in the basal ganglia after 3-hour middle cerebral artery occlusion and 1-hour reperfusion (by india ink tracer perfusion) was quantified by computerized video imaging. Animals were randomized to receive intravenous IB4 infusion 15 minutes before reperfusion (n = 7) or to receive no treatment (n = 6). Binding of IB4 to baboon leukocytes was maximal within 5 minutes of infusion. In the untreated group, a significant reduction in patency was observed in microvessels less than 30 microns diameter: mean percent reflow was 51% in the capillary diameter class (4.0-7.5 microns) and 39% in the precapillary arteriole and postcapillary venule diameter class (7.5-30 microns). Infusion of IB4 before middle cerebral artery reperfusion increased reflow in microvessels of all size classes, most significantly in those 7.5-30 microns (p = 0.049) and 30-50 microns (p = 0.034) in diameter. These results suggest that CD18-mediated polymorphonuclear leukocyte-endothelium adherence contributes to no-reflow predominantly in noncapillary microvessels and at least partially to that in capillaries.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0039-2499
1524-4628
DOI:10.1161/01.STR.23.5.712